【題目】直線是過(guò)點(diǎn)的動(dòng)直線,當(dāng)與圓相切時(shí),同時(shí)也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn)A、B,面積為,面積為,當(dāng)時(shí),求直線的方程.
【答案】(1)(2)
【解析】
(1)設(shè)直線,根據(jù)直線與圓相切的性質(zhì)列出方程求解m,再聯(lián)立直線方程與拋物線方程得到關(guān)于y的一元二次方程,由直線l與拋物線相切得即可求得p;(2)聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理及弦長(zhǎng)公式求出,求出圓心O到直線l的距離代入求出,由得,列方程求解m即可求得直線方程.
(1)由題意可知直線斜率顯然不為0 ,設(shè)直線,
由題意知圓心到直線l的距離 ,,
聯(lián)立直線與拋物線方程,因?yàn)橹本l與拋物線相切
,解得,
拋物線的方程為.
(2)聯(lián)立直線與拋物線方程,
根據(jù)題意,
設(shè),,則,,
所以,
圓心到直線的距離,
,
,,
,解得,,
所以直線l的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于和之間,將測(cè)量結(jié)果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生身高的中位數(shù);
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人進(jìn)行一場(chǎng)比賽,該比賽采用三局兩勝制,即先獲得兩局勝利者獲得該場(chǎng)比賽勝利.在每一局比賽中,都不會(huì)出現(xiàn)平局,甲獲勝的概率都為.
(1)求甲在第一局失利的情況下,反敗為勝的概率;
(2)若,比賽結(jié)束時(shí),設(shè)甲獲勝局?jǐn)?shù)為,求其分布列和期望;
(3)若甲獲得該場(chǎng)比賽勝利的概率大于甲每局獲勝的概率,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線是過(guò)點(diǎn)的動(dòng)直線,當(dāng)與圓相切時(shí),同時(shí)也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn)A、B,面積為,面積為,當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)討論的單調(diào)性;
(2)若在上僅有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在單位圓O:x2+y2=1上任取一點(diǎn)P(x,y),圓O與x軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達(dá)式分別為x=f(θ),y=g(θ),則下列說(shuō)法正確的是( 。
A.x=f(θ)是偶函數(shù),y=g(θ)是奇函數(shù)
B.x=f(θ)在為增函數(shù),y=g(θ)在為減函數(shù)
C.f(θ)+g(θ)≥1對(duì)于恒成立
D.函數(shù)t=2f(θ)+g(2θ)的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x),
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:a=1時(shí),f(x)+g(x)﹣(1)lnx>e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一項(xiàng)針對(duì)我國(guó)《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》的研究,表1為各個(gè)學(xué)段每個(gè)內(nèi)容主題所包含的條目數(shù).下圖是將下表的條目數(shù)轉(zhuǎn)化為百分比,按各學(xué)段繪制的等高條形圖.由圖表分析得出以下四個(gè)結(jié)論,其中錯(cuò)誤的是( )
學(xué)段 內(nèi)容主題 | 第一學(xué)段 (1—3年級(jí)) | 第二學(xué)段 (4—6年級(jí)) | 第三學(xué)段 (7—9年級(jí)) | 合計(jì) |
數(shù)與代數(shù) | 21 | 28 | 49 | 98 |
圖形與幾何 | 18 | 25 | 87 | 130 |
統(tǒng)計(jì)與概率 | 3 | 8 | 11 | 22 |
綜合與實(shí)踐 | 3 | 4 | 3 | 10 |
合計(jì) | 45 | 65 | 150 | 260 |
A.除了“綜合與實(shí)踐”外,其他三個(gè)內(nèi)容領(lǐng)域的條目數(shù)都隨著學(xué)段的升高而增加,尤其“圖形與幾何”在第三學(xué)段急劇增加,約是第二學(xué)段的3.5倍
B.在所有內(nèi)容領(lǐng)域中,“圖形與幾何”內(nèi)容最多,占.“綜合與實(shí)踐”內(nèi)容最少,約占
C.第一、二學(xué)段“數(shù)與代數(shù)”內(nèi)容最多,第三學(xué)段“圖形與幾何”內(nèi)容最多
D.“數(shù)與代數(shù)”內(nèi)容條目數(shù)雖然隨著學(xué)段的增長(zhǎng)而增長(zhǎng),而其百分比卻一直在減少.“圖形與幾何”內(nèi)容條目數(shù),百分比都隨學(xué)段的增長(zhǎng)而增長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展學(xué)生社會(huì)法治服務(wù)項(xiàng)目,共設(shè)置了文明交通,社區(qū)服務(wù),環(huán)保宣傳和中國(guó)傳統(tǒng)文化宣講四個(gè)項(xiàng)目,現(xiàn)有該校的甲、乙、丙、丁4名學(xué)生,每名學(xué)生必須且只能選擇1項(xiàng).
(1)求恰有2個(gè)項(xiàng)目沒(méi)有被這4名學(xué)生選擇的概率;
(2)求“環(huán)保宣傳”被這4名學(xué)生選擇的人數(shù)的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com