如圖所示,已知二面角α-l-β的平面角為θ(θ∈(0,
π
2
)),AB⊥BC,BC⊥CD,AB在平面β內(nèi),BC在l上,CD在平面α內(nèi),若AB=BC=CD=1,則AD的長(zhǎng)為
 
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算,二面角的平面角及求法
專題:空間位置關(guān)系與距離
分析:
AD
=
AB
+
BC
+
CD
,利用向量法能求出AD的長(zhǎng).
解答: 解:因?yàn)?span id="f6onb2k" class="MathJye">
AD
=
AB
+
BC
+
CD

所以
AD
2=(
AB
+
BC
+
CD
2
=
AB
2+
BC
2+
CD
2+2
AB
CD
+2
AB
BC
+2
BC
CD

=1+1+1+2cos(π-θ)=3-2cosθ.
所以|
AD
|=
3-2cosθ
,即AD的長(zhǎng)為
3-2cosθ

故答案為:
3-2cosθ
點(diǎn)評(píng):本題主要考查線段長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,x2-2x-3>0,命題q:?x0∈R,sinx0+cosx0=
2
,則下列判斷正確的是(  )
A、p為真命題
B、p∧q為真命題
C、p∨q為假命題
D、¬q為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
1+i
3-4i
的共軛復(fù)數(shù)
.
z
對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:sin2(A+45°)+sin2(A-45°)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合P={x|-2≤x≤2},M={x|x2-2x-3≤0},則(∁UP)∩M等于( 。
A、{x|-2≤x≤2}
B、{x|2<x≤3}
C、{x|2≤x≤3}
D、{x|-1<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2sinα-cosα=0,求
1+2sin(π-α)cos(-2π-α)
sin2(-α)-sin2(
5
2
π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-A1B1C1中,AB1⊥BC1,CA1⊥BC1.求證:AB1=CA1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2=9上一定點(diǎn)A(3,0),P為圓上的動(dòng)點(diǎn),求線段AP中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC中PA⊥AB,PA⊥AC,∠BAC=120°,PA=AB=AC=2,
(1)求該三棱錐的外接球體積;
(2)求內(nèi)切球的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案