在△ABC中,角A,B,C的對邊分別為a,b,c,若acos2+ccos2=b.
(1)求證:a,b,c成等差數(shù)列;
(2)若∠B=60°,b=4,求△ABC的面積.
(1)見解析(2)4
【解析】(1)acos2+ccos2=a·+c·=b,
即a(1+cos C)+c(1+cos A)=3b.由正弦定理得:
sin A+sin Acos C+sin C+cos Asin C=3sin B,
即sin A+sin C+sin(A+C)=3sin B,∴sin A+sin C=2sin B.
由正弦定理得,a+c=2b,故a,b,c成等差數(shù)列.
(2)由∠B=60°,b=4及余弦定理得:42=a2+c2-2accos 60°,
∴(a+c)2-3ac=16,
又由(1)知a+c=2b,代入上式得4b2-3ac=16,解得ac=16,
∴△ABC的面積S=acsin B=acsin 60°=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第2課時(shí)練習(xí)卷(解析版) 題型:填空題
已知E,F,G,H是空間四點(diǎn),命題甲:E,F,G,H四點(diǎn)不共面,命題乙:直線EF和GH不相交,則甲是乙成立的________條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
執(zhí)行如圖所示的程序框圖,如果依次輸入函數(shù):f(x)=3x、f(x)=sin x、f(x)=x3、f(x)=x+,那么輸出的函數(shù)f(x)為( )
A.3x B.sin x C.x3 D.x+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第3課時(shí)練習(xí)卷(解析版) 題型:選擇題
設(shè)e1,e2,e3,e4是某平面內(nèi)的四個(gè)單位向量,其中e1⊥e2,e3與e4的夾角為45°,對這個(gè)平面內(nèi)的任意一個(gè)向量a=xe1+ye2,規(guī)定經(jīng)過一次“斜二測變換”得到向量a1=xe3+e4.設(shè)向量t1=-3e3-2e4是經(jīng)過一次“斜二測變換”得到的向量,則|t|是( )
A.5 B. C.73 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第3課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知=1-yi,其中x,y是實(shí)數(shù),i是虛數(shù)單位,則x+yi的共軛復(fù)數(shù)為( )
A.1+2i B.1-2i C.2+i D.2-i
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知cos α=,cos(α+β)=-,且α,β∈,則cos(α-β)的值等于( )
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第1課時(shí)練習(xí)卷(解析版) 題型:解答題
函數(shù)f(x)=Asin +1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈,f =2,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)y=f(x),x∈R的導(dǎo)函數(shù)為f′(x),且f(x)=f(-x),f′(x)<f(x).則下列三個(gè)數(shù):ef(2),f(3),e2f(-1)從小到大依次排列為________.(e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知偶函數(shù)f(x)當(dāng)x∈[0,+∞)時(shí)是單調(diào)遞增函數(shù),則滿足f()<f(x)的x的取值范圍是( )
A.(2,+∞) B.(-∞,-1)
C.[-2,-1)∪(2,+∞) D.(-1,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com