若定義在區(qū)間D上的函數(shù)對于區(qū)間D上的任意兩個值、總有以下不等式成立,則稱函數(shù)為區(qū)間D上的凸函數(shù) .
(1)證明:定義在R上的二次函數(shù)是凸函數(shù);
(2)設(shè),并且時,恒成立,求實數(shù)的取值范圍,并判斷函數(shù)能否成為上的凸函數(shù);
(3)定義在整數(shù)集Z上的函數(shù)滿足:①對任意的,;②,. 試求的解析式;并判斷所求的函數(shù)是不是R上的凸函數(shù)說明理由.
證明:(1)對任意x1, x2∈R, 當(dāng), 有=
=
∴當(dāng)時,,即
當(dāng)時,函數(shù)f(x)是凸函數(shù).
(2) 當(dāng)x=0時, 對于a∈R,有f(x)≤1恒成立;當(dāng)x∈(0, 1]時, 要f(x)≤1恒成立
即, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當(dāng)=1時, 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.
由此可知,滿足條件的實數(shù)a的取值恒為負數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)
(3)令則,∵ ,∴,
令,則,故;
若,則
;
若,則 ∴;∴時,.
綜上所述,對任意的,都有;
∵所以,不是R上的凸函數(shù).
對任意,有
,
所以,不是上的凸函數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
2 |
x |
1 |
2 |
x1+x2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
2 |
x |
1 |
2 |
x1+x2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高考猜押題卷文科數(shù)學(xué)(二)解析版 題型:解答題
(本小題滿分14分)
已知函數(shù)
(Ⅰ)請研究函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有兩個零點,求實數(shù)的取值范圍;
(Ⅲ)若定義在區(qū)間D上的函數(shù)對于區(qū)間D上的任意兩個值x1、x2總有以下不等式成立,則稱函數(shù)為區(qū)間D上的“凹函數(shù)”.若函
數(shù)的最小值為,試判斷函數(shù)是否為“凹函數(shù)”,并對你的判斷加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省韶關(guān)市田家炳中學(xué)、乳源高級中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年廣東省華南師大附中高三綜合測試數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com