【題目】已知向量 =(4,3), =(2,﹣1),O為坐標(biāo)原點(diǎn),P是直線AB上一點(diǎn).
(1)若點(diǎn)P是線段AB的中點(diǎn),求向量 與向量 夾角θ的余弦值;
(2)若點(diǎn)P在線段AB的延長(zhǎng)線上,且| |= | |,求點(diǎn)P的坐標(biāo).

【答案】
(1)解:∵點(diǎn)P是線段AB的中點(diǎn),∴點(diǎn)P的坐標(biāo)為 ,即(3,1),

= =


(2)解:設(shè)P(x,y),由點(diǎn)P在線段AB的延長(zhǎng)線上,且

,∴ ,

,

解得:

∴點(diǎn)P的坐標(biāo)為(﹣2,﹣9).


【解析】(1)利用中點(diǎn)坐標(biāo)公式可得P,再利用向量夾角公式即可得出.(2)設(shè)P(x,y),由點(diǎn)P在線段AB的延長(zhǎng)線上,且 ,可得 ,即 ,利用向量相等即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017廣東佛山二!如圖,矩形中, , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,B為曲線Cy=上兩點(diǎn),AB的橫坐標(biāo)之和為4.

(1)求直線AB的斜率;

(2)設(shè)M為曲線C上一點(diǎn),CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為OD、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BCCA,AB為底邊的等腰三角形。沿虛線剪開(kāi)后,分別以BCCA,AB為折痕折起△DBC,△ECA,△FAB,使得DE、F重合,得到三棱錐。當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn)。(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)

求b關(guān)于a的函數(shù)關(guān)系式,并寫(xiě)出定義域;

證明:b>3a;

這兩個(gè)函數(shù)的所有極值之和不小于,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè), , , 是5個(gè)正實(shí)數(shù)(可以相等).

證明:一定存在4個(gè)互不相同的下標(biāo), , ,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點(diǎn), 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在x∈[ ,2]上,函數(shù)f(x)=x2+px+q與g(x)= + 在同一點(diǎn)取得相同的最小值,那么f(x)在x∈[ ,2]上的最大值是(
A.
B.4
C.8
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案