【題目】已知直三棱柱的底面為正三角形,分別是,上的點(diǎn),且滿足,

(1)求證:平面平面;

(2)設(shè)直三棱柱的棱均相等,求二面角的余弦值.

【答案】見解析

【解析】(1)取的中點(diǎn),連

因?yàn)?/span>,,所以…………2分

在等中,由的中點(diǎn),知,所以

因?yàn)槿庵?/span>是直三棱柱,所以平面,…………3分

又因?yàn)?/span>平面,所以

,所以平面

平面,所以平面平面…………5分

(2)以為坐標(biāo)原點(diǎn),以分別為軸,軸建立如圖所示的空間直角坐標(biāo)系.………6分

設(shè)直三棱柱的棱均為,則,,,

所以,………8分

設(shè)是平面的一個(gè)法向量,則

,得,取,則………9分

易知平面的一個(gè)法向量………10分

所以…………11分

由圖易知,二面角為銳角,所以二面角的余弦值為……12分

【命題意圖】本題主要考查空間平面與平面的垂直關(guān)系、運(yùn)用空間向量求二面角,意在考查邏輯思維能力、

空間想象能力、邏輯推證能力、計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)f(x)是R上的增函數(shù),已知f[f(x)]=16x+5,g(x)=f(x)(x+m).
(1)求f(x);
(2)若g(x)在(1,+∞)單調(diào)遞增,求實(shí)數(shù)m的取值范圍;
(3)當(dāng)x∈[﹣1,3]時(shí),g(x)有最大值13,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第十二屆全國(guó)人民代表大會(huì)第五次會(huì)議和政協(xié)第十二屆全國(guó)委員會(huì)第五次會(huì)議(簡(jiǎn)稱兩會(huì))將分別2017年3月5日和3月3日在北京開幕,某高校學(xué)生會(huì)為了解該校學(xué)生對(duì)全國(guó)兩會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對(duì)兩會(huì)“比較關(guān)注”與“不太關(guān)注”兩類,已知這200學(xué)生中男生比女生多20人,對(duì)兩會(huì)“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對(duì)兩會(huì)“不太關(guān)注”的學(xué)生中男生比女生少5人.

(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為男生與女生對(duì)兩會(huì)的關(guān)注有差異?

比較關(guān)注

不太關(guān)注

合計(jì)

男生

女生

合計(jì)

(2)該校學(xué)生會(huì)從對(duì)兩會(huì)比較關(guān)注的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再?gòu)倪@7人中隨機(jī)選出2參與兩會(huì)宣傳活動(dòng),求這2人全是男生的概率.

附:,.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)是偶函數(shù),定義x≥0時(shí),f(x)=
(1)求f(﹣2);
(2)當(dāng)x<﹣3時(shí),求f(x)的解析式;
(3)設(shè)函數(shù)y=f(x)在區(qū)間[﹣5,5]上的最大值為g(a),試求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市文化部門為了了解本市市民對(duì)當(dāng)?shù)氐胤綉蚯欠裣矏郏瑥?5-65歲的人群中隨機(jī)抽樣了人,得到如下的統(tǒng)計(jì)表和頻率分布直方圖.

(1)寫出其中的、的值;

(2)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?

(3)在(2)抽取的6人中隨機(jī)抽取2人,求這2人都是第3組的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線過(guò)定點(diǎn),且傾斜角為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極值的坐標(biāo)系中,曲線的極坐標(biāo)方程為

(1)求曲線的的直角坐標(biāo)方程與直線的參數(shù)方程;

(2)若直線與曲線相交于不同的兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若不存在極值點(diǎn),求的取值范圍;

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)的切線方程;

(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),試討論內(nèi)的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求的值;

2)設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案