已知橢圓的長(zhǎng)軸長(zhǎng)為10,兩焦點(diǎn)的坐標(biāo)分別為
(1)求橢圓的標(biāo)準(zhǔn)方程    (2)若P為短軸的一個(gè)端點(diǎn),求三角形的面積
解:(1)設(shè)橢圓標(biāo)準(zhǔn)方程為
由題意可得   
所以
因此橢圓標(biāo)準(zhǔn)方程為
(2)設(shè)P(0,4)為短軸的一個(gè)端點(diǎn)
所以k*s5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)軸上方橢圓上的一點(diǎn),且, ,
(Ⅰ) 求橢圓的方程和點(diǎn)的坐標(biāo);
(Ⅱ)判斷以為直徑的圓與以橢圓的長(zhǎng)軸為直徑的圓的位置關(guān)系;
(Ⅲ)若點(diǎn)是橢圓上的任意一點(diǎn),是橢圓的一個(gè)焦點(diǎn),探究以為直徑的圓與以橢圓的長(zhǎng)軸為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,經(jīng)過(guò)點(diǎn)且離心率.過(guò)定點(diǎn)的直線與橢圓相交于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存
在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直線坐標(biāo)系xoy中,已知△ABC的頂點(diǎn)A(-4,0)和C(4,0),頂點(diǎn)B在橢圓
_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,則當(dāng)取得最小值時(shí),橢圓的離心率是
                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左右焦點(diǎn)分別為是以點(diǎn)為圓心(為坐標(biāo)原點(diǎn)),以為半徑的圓與橢圓在第二、三象限的兩個(gè)交點(diǎn),且為等邊三角形,則橢圓的離心率的值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

平行四邊形為圓的外切四邊形,同時(shí)又為橢圓的內(nèi)接四邊形,則=_______________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)F1 、F2,P為橢圓上的一點(diǎn),已知,則
的面積為_(kāi)____________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的左準(zhǔn)線,左.右焦點(diǎn)分別為F1.F2,拋物線C2的準(zhǔn)線為,焦點(diǎn)是F2,C1與C2的一個(gè)交點(diǎn)為P,則|PF2|的值等于                                                            (   )
A.B.C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案