若f(tanx)=sin2x,則f(-1)的值是( )
A.-sin2
B.-1
C.
D.1
【答案】分析:令tanx=-1,根據(jù)正切函數(shù)圖象的周期與特殊角的三角函數(shù)值求出x的值,然后把x的值代入到f(tanx)=sin2x中利用誘導(dǎo)公式及特殊角的三角函數(shù)值求出值即可.
解答:解:因為tan(kπ-)=-1,(k∈Z)
所以f(-1)=f[tan(kπ-)]=sin2(kπ-)=sin(2kπ-)=-sin=-1.
故選B
點評:此題是一道基礎(chǔ)題,要求學(xué)生掌握正切函數(shù)圖象的周期,靈活運用誘導(dǎo)公式及特殊角的三角函數(shù)值化簡求值.做題時學(xué)生應(yīng)注意理解函數(shù)值的意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),如果存在給定的實數(shù)對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱f(x)為“S-函數(shù)”.
(1)判斷函數(shù)f1(x)=x,f2(x)=3x是否是“S-函數(shù)”;
(2)若f3(x)=tanx是一個“S-函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對(a,b);
(3)若定義域為R的函數(shù)f(x)是“S-函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(0,1)和(1,4),當(dāng)x∈[0,1]時,f(x)的值域為[1,2],求當(dāng)x∈[-2012,2012]時函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)圖象上的任意一點P的坐標(biāo)(x,y)滿足條件|x|≥|y|,則稱函數(shù)f(x)具有性質(zhì)S,那么下列函數(shù)中具有性質(zhì)S的是(  )
A、f(x)=ex-1B、f(x)=ln(x+1)C、f(x)=sinxD、f(x)=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)圖象上的任意一點p的坐標(biāo)(x,y)滿足條件|x|≥|y|,則稱函數(shù)具有性質(zhì)S,那么下列函數(shù)中具有性質(zhì)S的是(   )

(A). -1           (B). f(x)= lnx

(C). f(x)=sinx               (D). f(x)=tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x),如果存在給定的實數(shù)對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱f(x)為“S-函數(shù)”.
(1)判斷函數(shù)f1(x)=x,f2(x)=3x是否是“S-函數(shù)”;
(2)若f3(x)=tanx是一個“S-函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對(a,b);
(3)若定義域為R的函數(shù)f(x)是“S-函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(0,1)和(1,4),當(dāng)x∈[0,1]時,f(x)的值域為[1,2],求當(dāng)x∈[-2012,2012]時函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x),如果存在給定的實數(shù)對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱f(x)為“S-函數(shù)”.
(1)判斷函數(shù)f1(x)=x,f2(x)=3x是否是“S-函數(shù)”;
(2)若f3(x)=tanx是一個“S-函數(shù)”,求出所有滿足條件的有序?qū)崝?shù)對(a,b);
(3)若定義域為R的函數(shù)f(x)是“S-函數(shù)”,且存在滿足條件的有序?qū)崝?shù)對(0,1)和(1,4),當(dāng)x∈[0,1]時,f(x)的值域為[1,2],求當(dāng)x∈[-2012,2012]時函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案