已知A(-2,1)、B(4,3),求經(jīng)過兩直線2x-3y+1=0和3x+2y-1=0的交點和線段AB中點的直線l的方程.

答案:7x-4y+1=0
解析:

解法1:由解得

∴交點坐標(biāo)為

又線段AB中點坐標(biāo)為(12).

∴由兩點式l的方程為7x4y1=0

解法2:設(shè)所求直線l方程為2x3y1λ3x2y1=0,整理得(2x(2λ3)y+(1λ=0

∵直線l過線段AB中點M1,2),

∴(2×1+(3×2+(1λ=0

可得

代入直線方程得l的方程為7x4y1=0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是( 。
A、A,B,C三點可以構(gòu)成直角三角形B、A,B,C三點可以構(gòu)成銳角三角形C、A,B,C三點可以構(gòu)成鈍角三角形D、A,B,C三點不能構(gòu)成任何三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-2,1+
3
),B(2,1-
3
),P(-1,1),若直線l過點P且與線段AB有公共點,則直線l的傾斜角的范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(0,-1),
c
=
a
+k
b
d
=
a
-
b
,若
c
d
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(3,2,λ),若
a
b
、
c
三向量共面,則實數(shù)λ等于( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1,3),
b
=(-4,5,x),若
a
b
.則x=
 

查看答案和解析>>

同步練習(xí)冊答案