山東省某示范性高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級(jí)開始,在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座)統(tǒng)計(jì)數(shù)據(jù)表明,各學(xué)科講座各天的滿座概率如下表:
| 信息技術(shù) | 生物 | 化學(xué) | 物理 | 數(shù)學(xué) |
周一 | |||||
周三 | |||||
周五 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
| 男性 | 女性 | 合計(jì) |
反感 | 10 | | |
不反感 | | 8 | |
合計(jì) | | | 30 |
P(K2>k) | 0.05 | 0.025 | 0.010 | 0.005 |
k | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某果園要用三輛汽車將一批水果從所在城市E運(yùn)至銷售城市F,已知從城市E到城市F有兩條公路.統(tǒng)計(jì)表明:汽車走公路Ⅰ堵車的概率為,不堵車的概率為;走公路Ⅱ堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路Ⅰ,第三輛汽車丙由于其他原因走公路Ⅱ運(yùn)送水果,且三輛汽車是否堵車相互之間沒有影響.
(1)求甲、乙兩輛汽車中恰有一輛堵車的概率;
(2)求三輛汽車中至少有兩輛堵車的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
袋中有12個(gè)小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率是,試求得到黑球、黃球、綠球的概率各是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了考察某種中藥預(yù)防流感效果,抽樣調(diào)查40人,得到如下數(shù)據(jù):服用中藥的有20人,其中患流感的有2人,而未服用中藥的20人中,患流感的有8人。
(1)根據(jù)以上數(shù)據(jù)建立列聯(lián)表;
(2)能否在犯錯(cuò)誤不超過0.05的前提下認(rèn)為該藥物有效?
參考
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的6個(gè)頂點(diǎn),在頂點(diǎn)取自A,B,C,D,E,F(xiàn)的所有三角形中,隨機(jī)(等可能)取一個(gè)三角形.設(shè)隨機(jī)變量X為取出三角形的面積.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求數(shù)學(xué)期望E ( X ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
2012年10月莫言獲得諾貝爾文學(xué)獎(jiǎng)后,其家鄉(xiāng)山東高密政府準(zhǔn)備投資6.7億元打造旅游帶,包括莫言舊居周圍的莫言文化體驗(yàn)區(qū),紅高粱文化休閑區(qū),愛國主義教育基地等;為此某文化旅游公司向社會(huì)公開征集旅游帶建設(shè)方案,在收到的方案中甲、乙、丙三個(gè)方案引起了專家評委的注意,現(xiàn)已知甲、乙、丙三個(gè)方案能被選中的概率分別為,且假設(shè)各自能否被選中是無關(guān)的.
(1)求甲、乙、丙三個(gè)方案只有兩個(gè)被選中的概率;
(2)記甲、乙、丙三個(gè)方案被選中的個(gè)數(shù)為,試求的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人參加某種選拔測試.在備選的道題中,甲答對其中每道題的概率都是,乙能答對其中的道題.規(guī)定每次考試都從備選的道題中隨機(jī)抽出道題進(jìn)行測試,答對一題加分,答錯(cuò)一題(不答視為答錯(cuò))減分,至少得分才能入選.
(1)求甲得分的數(shù)學(xué)期望;
(2)求甲、乙兩人同時(shí)入選的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量
(Ⅰ)若,求向量的概率;
(Ⅱ)若用計(jì)算機(jī)產(chǎn)生的隨機(jī)二元數(shù)組構(gòu)成區(qū)域:,求二元數(shù)組滿足1的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com