(2010•北京模擬)定義函數(shù)y=f(x):對于任意整數(shù)m,當實數(shù)x∈(m-
1
2
,m+
1
2
)
時,有f(x)=m.
(Ⅰ)設函數(shù)的定義域為D,畫出函數(shù)f(x)在x∈D∩[0,4]上的圖象;
(Ⅱ)若數(shù)列an=2+10(
2
5
)n
(n∈N*),記Sn=f(a1)+f(a2)+…+f(an),求Sn;
(Ⅲ)若等比數(shù)列bn的首項是b1=1,公比為q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范圍.
分析:(Ⅰ)根據函數(shù)y=f(x)的定義,求出函數(shù)在區(qū)間[0,4]上的解析式,即可畫出函數(shù)的圖象;
(Ⅱ)根據an=2+10(
2
5
)
n
,可知2<an<6,求出f(an),在求和即可;
(Ⅲ)由f(b1)+f(b2)+f(b3)=4,且b1=1,得f(q)+f(q2)=3,分類討論即可求得結果.
解答:解:(I)當x∈[0,
1
2
)時,f(x)=0,
當x∈[
1
2
3
2
)時,f(x)=1,
當x∈[
3
2
5
2
)時,f(x)=2,
當x∈[
5
2
,
7
2
)時,f(x)=3,
當x∈[
5
2
,4]時,f(x)=4,
∴圖象如圖所示,
(II)由于an=2+10•(
2
5
)n
,所以f(an)=
6,n=1
4,n=2
3,n=3
2,n≥4
,
因此Sn=
6,n=1
10,n=2
2n+7,n≥3
;
(III)由f(b1)+f(b2)+f(b3)=4,且b1=1,得f(q)+f(q2)=3,
當0<q≤1時,則q2≤q≤1,
所以f(q2)≤f(q)≤f(1)=1,
則f(q)+f(q2)≤2<3,不合題意;
當q>1時,則q2>q>1,
所以f(q2)≥f(q)≥f(1)=1.
又f(q)+f(q2)=3,
∴只可能是
f(q)=1
f(q2)=2
,即
1
2
<q<
3
2
3
2
q2
5
2
,
解之得
6
2
<q<
3
2
點評:本題以新定義為載體,考查分段函數(shù)的解析式的求法和圖象的畫法,以及數(shù)列求和問題,考查利用知識分析解決問題的能力和運算能力,讀懂題意是解題的關鍵,屬難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•北京模擬)按照程序框圖(如右圖)執(zhí)行,第3個輸出的數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•北京模擬)從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)的概率是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•北京模擬)已知某種筆筒,其三視圖如右圖所示(單位:cm).現(xiàn)要為100個這種相同規(guī)格的筆筒涂色(筆筒內外均 要涂色,筆筒厚度忽略不計).如果每0.5kg涂料可以涂1m2,那么為這批筆筒涂色約需涂料( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•北京模擬)函數(shù)y=
3-x
x+1
的定義域是(  )

查看答案和解析>>

同步練習冊答案