【題目】如圖,直二面角D—AB—E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.

1求證:AE⊥平面BCE;

2求二面角B—AC—E的余弦值.

【答案】1詳見解析2

【解析】

試題分析:1欲證AE平面BCE,由題設(shè)條件知可先證BFAE,CBAE,再由線面垂直的判定定理得出線面垂直即可;2求二面角B-AC-E的正弦值,需要先作角,連接BD交AC交于G,連接FG,可證得BGF是二面B-AC-E的平面角,在BFG中求解即可

試題解析:1證明:∵平面ACE. ------------------1

∵二面角D—AB—E為直二面角,且,

平面ABE ------------------3

------------------4

又∵BF∩CB=B,

------------------5分

2解:連結(jié)BD交AC于G,連結(jié)FG.

平面ACE,∴AC

又∵正方形ABCD中,,且BF∩BG=B

即為二面角B—AC—E的平面角------------------8分

,,

中,可求

∴在中,F(xiàn)G=

,即二面角B—AC—E的余弦值為 ------------12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱, ,,平面平面相交于點(diǎn).

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為Cx萬元,當(dāng)年產(chǎn)量不足80千件時(shí),Cxx2+10x萬元;當(dāng)年產(chǎn)量不少于80千件時(shí),Cx=51x+-1 450萬元.通過市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠年內(nèi)生產(chǎn)的商品能全部銷售完.

1寫出年利潤(rùn)L萬元關(guān)于年產(chǎn)量x千件的函數(shù)解析式;

2年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

函數(shù).

1)當(dāng)時(shí),求函數(shù)的定義域;

2)若,判斷的奇偶性;

3)是否存在實(shí)數(shù),使函數(shù)遞增,并且最大值為1,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣3x+2≤0},集合B={y|y=x2﹣2x+a},集合C={x|x2﹣ax﹣4≤0},命題p:A∩B≠,命題q:AC.

1若命題p為假命題,求實(shí)數(shù)a的取值范圍.

2若命題p∧q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的最小值為,且.

(1)求的解析式;

(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;

(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中,,,四邊形為矩形,平面平面,.

1求證:平面;

2點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面二面角的平面角為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量關(guān)于行駛速度千米/小時(shí)的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米

當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

II當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

當(dāng),時(shí),設(shè),求證:對(duì)任意的,

當(dāng)時(shí),若對(duì)任意,不等式恒成立.求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案