雙曲線數(shù)學公式的左右焦點為F1,F(xiàn)2,P是雙曲線上一點,滿足|PF2|=|F1F2|,直線PF1與圓x2+y2=a2相切,則雙曲線的離心率為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:先設PF1與圓相切于點M,利用|PF2|=|F1F2|,及直線PF1與圓x2+y2=a2相切,可得幾何量之間的關(guān)系,從而可求雙曲線的離心率的值.
解答:設PF1與圓相切于點M,因為|PF2|=|F1F2|,所以△PF1F2為等腰三角形,
所以|F1M|=|PF1|,
又因為在直角△F1MO中,|F1M|2=|F1O|2-a2=c2-a2,所以|F1M|=b=|PF1|①
又|PF1|=|PF2|+2a=2c+2a ②,
c2=a2+b2
由①②③解得 =
故選D.
點評:本題考查直線與圓相切,考查雙曲線的定義,考查雙曲線的幾何性質(zhì),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
A.函數(shù)y=f(x-2)和y=f(2-x)的圖象關(guān)于直線x=2對稱.
B.已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點的橫坐標為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
π
2

C.底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.
D.若P為雙曲線x2-
y2
9
=1上的一點,F(xiàn)1、F2分別為雙曲線的左右焦點,且|PF2|=4,則|PF1|=2 或6.
其中正確的命題是
 
(把所有正確的命題的選項都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設離心率為e的雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F,直線l過焦點F,且斜率為k,則直線l與雙曲線C的左右兩支都相交的充要條件是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=2
(a>0,b>0)的左右焦點為F1,F(xiàn)2,其上一點P,若∠F1PF2=θ,
(1)證明:三角形SF1PF2=b2cot
θ
2
;
(2)若雙曲線的離心率為2,斜率為1的直線與雙曲線交于B、D兩點,BD的中點M(1,3),雙曲線的右頂點為A,右焦點為F,若過A、B、D三點的圓與x軸相切,請求解雙曲線方程和
DF
BF
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的一個焦點為F,左右頂點分別為A,B .P是雙曲線上任意一點,則分別以線段為直徑的兩圓的位置關(guān)系為

A.相交        B.相切       C.相離         D.以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設離心率為e的雙曲線的右焦點為F,直線l過焦點F,且斜率為k,則直線l與雙曲線C的左右兩支都相交的充要條件是(   )

A、          B、   

C、          D、

查看答案和解析>>

同步練習冊答案