【題目】如果定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則f(x)>0的解集為 , xf(x)<0的解集為

【答案】(﹣∞,﹣3)∪(0,3);(﹣∞,﹣3)∪(3,+∞)
【解析】解:由奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),
可得f(x)在(﹣∞,0)內(nèi)也為減函數(shù),又f(3)=0,∴f(﹣3)=0,
則f(x)>0的解集為(﹣∞,﹣3)∪(0,3);
不等式xf(x)<0等價為
∵函數(shù)y=f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù),又f(3)=0,
∴解得x>3或x<﹣3,
即不等式的解集為(﹣∞,﹣3)∪(3,+∞).
所以答案是:(﹣∞,﹣3)∪(0,3);(﹣∞,﹣3)∪(3,+∞).
【考點精析】通過靈活運用奇偶性與單調(diào)性的綜合,掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A,B的坐標分別是 ,點G是△ABC的重心,y軸上一點M滿足GM∥AB,且|MC|=|MB|. (Ⅰ)求△ABC的頂點C的軌跡E的方程;
(Ⅱ)直線l:y=kx+m與軌跡E相交于P,Q兩點,若在軌跡E上存在點R,使四邊形OPRQ為平行四邊形(其中O為坐標原點),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求實數(shù)a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0)在其定義域上為奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若有唯一解,求實數(shù)的值;

(Ⅱ)證明:當時,

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2﹣2x.
(1)求f(x)的解析式,并畫出的f(x)圖象;

(2)設(shè)g(x)=f(x)﹣k,利用圖象討論:當實數(shù)k為何值時,函數(shù)g(x)有一個零點?二個零點?三個零點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是甲、乙兩名籃球運動員2012年賽季每場比賽得分的莖葉圖,則甲、乙兩人比賽得分的中位數(shù)之和是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= ,(x∈(﹣∞,0]∪[2,+∞))的值域為(
A.[0,4]
B.[0,2)∪(2,4]
C.(﹣∞,0]∪[4,+∞)
D.(﹣∞,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系的原點為極點, 軸正半軸為極軸,并在兩種坐標系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設(shè)直線與曲線相交于 兩點,當變化時,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案