已知橢圓C,以拋物線的焦點(diǎn)為橢圓的一個(gè)焦點(diǎn),且短軸一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)可組成一個(gè)等邊三角形,則橢圓C的離心率為                                 
A       B      C       D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓G與雙曲線有相同的焦點(diǎn),且過點(diǎn)
(1)求橢圓G的方程
(2)設(shè)、是橢圓G的左焦點(diǎn)和右焦點(diǎn),過的直線與橢圓G相交于A、B兩點(diǎn),請問的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程,若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的左、右焦點(diǎn)為,過點(diǎn)斜率為正數(shù)的直線交兩點(diǎn),且成等差數(shù)列。
(Ⅰ)求的離心率;
(Ⅱ)若直線y=kx(k<0)與交于C、D兩點(diǎn),求使四邊形ABCD面積S最大時(shí)k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且兩個(gè)焦點(diǎn)和短軸的一個(gè)端點(diǎn)是一個(gè)等腰三角形的頂點(diǎn).斜率為的直線過橢圓的上焦點(diǎn)且與橢圓相交于,兩點(diǎn),線段的垂直平分線與軸相交于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)試用表示△的面積,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓雙曲線拋物線
的離心率分別為,則
A.B.
C.D.關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本題滿分12分)
已知橢圓方程為,斜率為的直線過橢圓的上焦點(diǎn)且與橢圓相交于兩點(diǎn),線段的垂直平分線與軸相交于點(diǎn)
(Ⅰ)求的取值范圍;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓,的左焦點(diǎn),作軸的垂線交橢圓于點(diǎn),為右焦點(diǎn)。若,則橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,直線l與橢圓交于A,B兩點(diǎn),M是線段AB的中點(diǎn),連接OM并延長交橢圓于點(diǎn)C,設(shè)直線AB與直線OM的斜率分別為,且則橢圓離心率的取值范圍為                     ; 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
 已知A(-2,0),B(2,0)為橢圓C的左、右頂點(diǎn),F(xiàn)為其右焦點(diǎn),P是橢圓C上異于A、B的動(dòng)點(diǎn),且面積的最大值為
(1)求橢圓C的方程及離心率e;
  (2)直線AP與橢圓在點(diǎn)B處的切線交于點(diǎn)D,當(dāng)直線AP繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明。

查看答案和解析>>

同步練習(xí)冊答案