(2013•寧波模擬)已知整數(shù)x,y,z滿足x>y>z,且2x+3+2y+3+2z+3=37,則整數(shù)組(x,y,z)為
(2,-1,-3)
(2,-1,-3)
分析:由于2x+3+2y+3+2z+3=37,且x>y>z,結合指數(shù)函數(shù)的性質得到24<2x+3<37<26,從而解得1<x<3.又x是整數(shù),故有x=2.進一步可得y,z的值,從而得出答案.
解答:解:由于2x+3+2y+3+2z+3=37,且x>y>z,
∴2x+3>2y+3>2z+3>0,
∴24<2x+3<37<26,∴4<x+3<6,1<x<3.
∴x=2.
當x=2時,2x+3+2y+3+2z+3=37即2y+3+2z+3=5,
同理得y=-1,
∴z=-3.
則整數(shù)組(x,y,z)為 (2,-1,-3).
故答案為:(2,-1,-3).
點評:本題考查了函數(shù)與方程的綜合運用,以及指數(shù)函數(shù)的性質,考查了學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,x軸被曲線C2:y=x2-b截得的線段長等于C1的短軸長.C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA,MB分別與C1相交于點D、E.
(1)求C1、C2的方程;
(2)求證:MA⊥MB.
(3)記△MAB,△MDE的面積分別為S1、S2,若
S1
S2
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)若方程x2-5x+m=0與x2-10x+n=0的四個根適當排列后,恰好組成一個首項1的等比數(shù)列,則m:n值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)已知F1、F2是橢圓的兩個焦點,滿足
MF1
MF2
的點M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是
(O,
2
2
(O,
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)已知f(x)=ax-lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當a=1時,求f(x)的單調區(qū)間和極值;
(2)若f(x)≥3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項和為sn
(Ⅰ)求數(shù)列{an}的通項公式.
(Ⅱ)若數(shù)列{bn}滿足 bn=
1
sn+1-1
,其前n項和為Tn,求證Tn
3
4

查看答案和解析>>

同步練習冊答案