一塊長方形鐵皮長為a米,寬為b米(a>b),若集合A={x|x2+ax+b=26x}中只有一個元素m,且集合{a,b}的子集個數(shù)也為m,求該長方形鐵皮的面積.
考點:集合的表示法
專題:集合
分析:首先,根據(jù)集合A={x|x2+ax+b=26x}中只有一個元素,得到:△=(a-26)2-4b=0,然后,借助于x=m=4,建立另一個等式,從而聯(lián)立方程組,求解a,b的值.最后,得到面積.
解答: 解:∵集合A={x|x2+ax+b=26x}中只有一個元素,
∴x2+(a-26)x+b=0有且只有兩個相等的實根,
∴△=(a-26)2-4b=0,①
∵集合{a,b}的子集個數(shù)為m,且a>b,
∴m=4,
把x=m=4代入x2+ax+b=26x,得
16+4a+b=104,②
聯(lián)立①②,
解出a=18,b=16,
∴S=ab=18×16=288,
∴長方形鐵皮的面積為288.
點評:本題重點考查集合的表示法,集合的子集個數(shù)問題等,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2-2x+y2-2my+2m-1=0,當圓的面積最小時,直線y=x+b與圓相切,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
cos10°
tan20°
+
3
sin10°•tan70°-2cos40°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個頂點分別為A(-2,1)、B(6,2),且BC邊的傾斜角為45°,AC邊的斜率為-
1
2

(1)根據(jù)題意畫出圖形;
(2)求BC邊上的高AH所在的直線方程;
(3)求AH的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若1<a+b<5,-1<a-b<3,求3a-2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3sinA,cosA),
b
=(2sinA,5sinA-4cosA),A∈(
2
,2π),且
a
b
.求tanA和cos(A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,對于任意相鄰三點都不共線的有序整點列(整點即橫縱坐標都是整數(shù)的點)A(n):A1,A2,A3,…,An與B(n):B1,B2,B3,…,Bn,其中n≥3,若同時滿足:
①兩點列的起點和終點分別相同;
②線段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,則稱A(n)與B(n)互為正交點列.
(Ⅰ)求A(3):A1(0,2),A2(3,0),A3(5,2)的正交點列B(3);
(Ⅱ)判斷A(4):A1(0,0),A2(3,1),A3(6,0),A4(9,1)是否存在正交點列B(4)?并說明理由;
(Ⅲ)?n≥5,n∈N,是否都存在無正交點列的有序整點列A(n)?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1、x2為實系數(shù)一元二次方程ax2+bx+c=0的兩個虛根,且
x
2
1
x2
∈R,求
x1
x2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2-x-ax+a≤0的解也是不等式x2-ax+1-a>0的解,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案