設函數(shù)f(x)滿足f(x)=1+f(
1
2
)•log2x,求f(2)的值.
考點:函數(shù)的值
專題:函數(shù)的性質及應用
分析:根據(jù)函數(shù)表達式,先求出f(
1
2
)的值即可得到結論.
解答: 解:∵f(x)滿足f(x)=1+f(
1
2
)•log2x,
∴f(
1
2
)=1+f(
1
2
)•log2
1
2
=1-f(
1
2
),
即f(
1
2
)=
1
2

即f(x)=1+
1
2
log2x,
∴f(2)=1+
1
2
•log22=1+
1
2
=
3
2
點評:本題主要考查函數(shù)值的計算,利用函數(shù)直接進行賦值求解即可得.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

當α∈R時,下列各式恒成立的是( 。
A、sin(3π-α)=-sinα
B、sin(
2
+α)=-cosα
C、cos(14π-α)=cosα
D、cos(11π+α)=cosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經過P(1,2),求下列的值;
(1)
3sinα+2cosα
sinα-cosα
;
(2)
cos(π-α)cos(
π
2
+α)sin(α-
2
)
sin(3π+α)sin(α-π)cos(π+α)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項和,已知S8=68,a1a8=-38且a1<a8
(Ⅰ)求{an}的通項公式;
(Ⅱ)調整數(shù)列{an}的前三項a1、a2、a3的順序,使它成為等比數(shù)列{bn}的前三項,求{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+1
-ax,證明:當且僅當a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知OPQ是半徑為
3
,圓心角為
π
3
的扇形,C是扇形弧上的動點,ABCD是扇形的內接矩形,記∠COP=x,矩形ABCD的面積為f(x).
(Ⅰ)求函數(shù)f(x)的解析式,并寫出其定義域;
(Ⅱ)求函數(shù)y=f(x)+f(x+
π
4
)的最大值及相應的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設各項都是正整數(shù)的無窮數(shù)列{an}滿足:對任意n∈N*,有an<an+1.記bn=aan
(1)若數(shù)列{an}是首項a1=1,公比q=2的等比數(shù)列,求數(shù)列{bn}的通項公式;
(2)若bn=3n,證明:a1=2;
(3)若數(shù)列{an}的首項a1=1,cn=a an+1,{cn}是公差為1的等差數(shù)列.記dn=-2n•an,Sn=d1+d2+…+dn-1+dn,問:使Sn+n•2n+1>50成立的最小正整數(shù)n是否存在?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2-bx+1(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實數(shù)b的值;
(2)若b=0,h(x)=f(x)-g(x),?x1、x2[1,2]使得h(x1)-h(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)當b≥2時,若對于區(qū)間[1,2]內的任意兩個不相等的實數(shù)x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
1-x(1-x)
的值域為
 

查看答案和解析>>

同步練習冊答案