【題目】已知A(a,0)、B(0,b)(其中ab≠0)O為坐標原點.
(1)動點P(x,y)滿足,求P點的軌跡方程;
(2)設是線段AB的n+1(n≥1)等分點,當n=2018時,求的值;
(3)若a=b=1,t∈[0,1],求的最小值.
【答案】(1)=1;(2);(3)
【解析】
(1)由,可得點三點共線,即點在直線上,
再求直線的截距式方程即可;
(2)設依次為從A起始的2019個等分點,可得,再首尾相加可得的值;
(3)的幾何意義是:線段上的一點到兩個定點的距離之和,再利用兩點之間線段最短,求最小值即可.
解: (1)因為,
所以,
所以,
即,
即點三點共線,即點在直線上,
由直線的截距式方程可得: P點的軌跡方程為=1;
(2)不妨設依次為從A起始的2019個等分點,于是有, ,
所以,事實上,對任意的正整數(shù),若,
則有,,
即,
所以
,
所以;
(3)當a=b=1,根據(jù)題意,在線段上存在一點,使得 , ,
且有點 ,,則有,
,則的幾何意義是:線段上的一點到兩個定點的距離之和,又直線的方程為, 易得點關于直線的對稱點為,根據(jù)反射定律可得即為所求的最小值,又,
故的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還”其大意為:“有一個人走378里路,第一天健步走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,請問此人第5天走的路程為( )
A. 36里 B. 24里 C. 18里 D. 12里
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為和,離心率是,直線過點交橢圓于, 兩點,當直線過點時, 的周長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)當直線繞點運動時,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在區(qū)間上的值域.
(1)求的值;
(2)若不等式在上恒成立,求實數(shù)的取值范圍;
(3)若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個整數(shù)除以三余二,除以五余三,求這個整數(shù).設這個整數(shù)為,當時, 符合條件的共有_____個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):
單價(元) | 18 | 19 | 20 | 21 | 22 |
銷量(冊) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:
(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?
附:,,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com