已知函數(shù)
(Ⅰ)當時,求函數(shù)的極大值和極小值;
(Ⅱ)當時,恒成立,求的取值范圍.

(Ⅰ)極大值為2,極小值為-2;(Ⅱ)

解析試題分析:(Ⅰ)當時,求函數(shù)的極大值和極小值,與極值有關,可利用導數(shù)解決,先對函數(shù)求導,求出導數(shù)等零點,在判斷導數(shù)等零點兩邊的符號,從而得出極大值和極小值,本題當時,,得,由導數(shù)的符號從而得極大值和極小值;(Ⅱ)當時,恒成立,求的取值范圍,等價于,又因為,可得恒成立,令 即,解得
試題解析:(Ⅰ)遞增區(qū)間遞減區(qū)間,極大值為2,極小值為-2
(Ⅱ)等價于上恒成立。

因為
上恒成立等價于
考點:函數(shù)極值,二次函數(shù)恒成立問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為常數(shù).
(1)當時,求函數(shù)的單調遞增區(qū)間;
(2)若任取,求函數(shù)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義函數(shù)階函數(shù).
(1)求一階函數(shù)的單調區(qū)間;
(2)討論方程的解的個數(shù);
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,,且直線與曲線相切.
(1)若對內的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(2)(。┊時,求最大的正整數(shù),使得任意個實數(shù)是自然對數(shù)的底數(shù))都有成立;
(ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,其中,曲線在點處的切線垂直于軸.
(1)求的值;
(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)),為常數(shù)),是實數(shù)集上的奇函數(shù).
(1)求證:;
(2)討論關于的方程:的根的個數(shù);
(3)設,證明:為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)R,,
(1)求函數(shù)f(x)的值域;
(2)記函數(shù),若的最小值與無關,求的取值范圍;
(3)若,直接寫出(不需給出演算步驟)關于的方程的解集

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中
(I)若函數(shù)圖象恒過定點P,且點P關于直線的對稱點在的圖象上,求m的值;
(Ⅱ)當時,設,討論的單調性;
(Ⅲ)在(I)的條件下,設,曲線上是否存在兩點P、Q,使△OPQ(O為原點)是以O為直角頂點的直角三角形,且斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知 ().
(Ⅰ)當時,判斷在定義域上的單調性;
(Ⅱ)若上的最小值為,求的值;
(Ⅲ)若上恒成立,試求的取值范圍.

查看答案和解析>>

同步練習冊答案