橢圓的長、短軸都在坐標軸上,和橢圓
x2
9
+
y2
4
=1共焦點,并經(jīng)過點P(3,-2),則橢圓的方程為
 
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出已知橢圓的焦點,設出所求的橢圓方程,由a,b,c的關系和點P在橢圓上,得到方程,解得即可.
解答: 解:橢圓
x2
9
+
y2
4
=1的焦點為(-
5
,0),(
5
,0),
則設所求橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),c=
5
,
即a2-b2=5,
又經(jīng)過點P(3,-2),即有
9
a2
+
4
b2
=1,
解得,a2=15,b2=10.
則有所求橢圓方程為:
x2
15
+
y2
10
=1.
點評:本題考查橢圓的方程和性質(zhì),考查解方程的運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在命題“若x∈R,f(x)=0,則函數(shù)f(x)是奇函數(shù)”的逆命題、否命題與逆否命題中,真命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點O,它的短軸長為2
2
,相應的焦點F1(c,0)(c>0)的準線l與x軸相交于A,|OF1|=2|F1A|.
(1)求橢圓的方程;
(2)過橢圓C的左焦點作一條與兩坐標軸都不垂直的直線l,交橢圓于P、Q兩點,在x軸上是否存在點M,對任意的直線l,MF2為△MPQ的一條角平分線,若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:存在x∈R,9x-3x-a≤0,若命題¬p是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
(2-a)x+1,x<1
axx≥1
在定義域上總有
f(x2)-f(x1)
x2-x1
>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

AB
=
2
2
a
+5
b
),
BC
=-2
a
+8
b
,
CD
=3(
a
-
b
),則共線的三點是(  )
A、A,B,C
B、B,C,D
C、A,B,D
D、A,C,D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|x+1|,x≤0
|log2x|,x>0
,若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則(x1+x2)+
1
x3
+
1
x4
的取值范圍是( 。
A、[0,
1
2
)
B、(0 ,
1
2
]
C、[0,
1
2
]
D、[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校買實驗設備,與廠家協(xié)商,按出廠價結(jié)算,若超過50套還可以每套比出廠價低30元給予優(yōu)惠,若按出廠價應付a元,但多買11套就可以按優(yōu)惠價結(jié)算,恰好也付a元(價格為整數(shù)),則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為R上的增函數(shù),且f(log2x)>f(1),則x的取值范圍為( 。
A、(2,+∞)
B、(0,
1
2
)∪(0,+∞)
C、(
1
2
,2)
D、(0,1)∪(2,+∞)

查看答案和解析>>

同步練習冊答案