函數(shù)f(x)=x2-6x+1的零點個數(shù)是( 。
A、0B、1C、2D、3
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接由判別式的符號進行判斷,從而求出函數(shù)的零點的個數(shù).
解答: 解:∵函數(shù)f(x)=x2-6x+1,
∴△=36-4=32>0,
∴函數(shù)有2個不相等的實根,
故選:C.
點評:本題考查了函數(shù)的零點問題,采用判別式判斷簡單明了,本題屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
ai+1
1-i
為純虛數(shù),則a的值為( 。
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈[
π
4
,
π
2
],cos2θ=-
1
8
則sinθ=( 。
A、
3
5
B、
3
4
C、
7
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos56°sin26°+cos34°cos154°=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果點P(sinθ,cosθ)位于第三象限,那么角θ所在象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ=2cosθ與ρsinθ=1的交點的極坐標(biāo)是( 。
A、(
2
,
π
4
B、(
2
,
4
C、(
2
2
,
π
4
D、(
2
2
,
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(b,a)且x≠0,
1
x
∈(
1
a
,
1
b
),則實數(shù)a,b滿足( 。
A、a<b<0
B、a<0<b
C、a>0>b
D、a>b>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0)
(1)若x=
π
6
,求向量
a
,
c
的夾角;
(2)當(dāng)x∈[
π
2
8
]時,求函數(shù)f(x)=2
a
b
+1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(4x+4)-x2-4x,求:
(Ⅰ)f(x)的單調(diào)區(qū)間;       
(Ⅱ)f(x)極大值.

查看答案和解析>>

同步練習(xí)冊答案