【題目】如圖所示,△ABC內(nèi)接于圓O,D是 的中點(diǎn),∠BAC的平分線分別交BC和圓O于點(diǎn)E,F(xiàn). (Ⅰ)求證:BF是△ABE外接圓的切線;
(Ⅱ)若AB=3,AC=2,求DB2﹣DA2的值.

【答案】解:(Ⅰ)設(shè)△ABE外接圓的圓心為O′,連結(jié)BO′并延長(zhǎng)交圓O′于G點(diǎn),連結(jié)GE, 則∠BEG=90°,∠BAE=∠BGE.
因?yàn)锳F平分∠BAC,
所以 ,
所以∠FBE=∠BAE,
所以∠FBG=∠FBE+∠EBG=∠BGE+∠EBG=180°﹣∠BEG=90°,
所以O(shè)′B⊥BF,
所以BF是△ABE外接圓的切線
(Ⅱ)連接DF,則DF⊥BC,
所以DF是圓O的直徑,
因?yàn)锽D2+BF2=DF2 , DA2+AF2=DF2 ,
所以BD2﹣DA2=AF2﹣BF2
因?yàn)锳F平分∠BAC,
所以△ABF∽△AEC,
所以 = ,
所以ABAC=AEAF=(AF﹣EF)AF,
因?yàn)椤螰BE=∠BAE,
所以△FBE∽△FAB,從而B(niǎo)F2=FEFA,
所以AB﹣AC=AF2﹣BF2 ,
所以BD2﹣DA2=ABAC=6

【解析】(Ⅰ)設(shè)△ABE外接圓的圓心為O′,連結(jié)BO′并延長(zhǎng)交圓O′于G點(diǎn),連結(jié)GE,則∠BEG=90°,∠BAE=∠BGE,可證∠FBE=∠BAE,進(jìn)而證明∠FBG=90°,即可得證BF是△ABE外接圓的切線.(Ⅱ)連接DF,則DF⊥BC,由勾股定理可得BD2﹣DA2=AF2﹣BF2 , 利用相似三角形的性質(zhì)可得ABAC=AEAF=(AF﹣EF)AF,由△FBE∽△FAB,從而B(niǎo)F2=FEFA,得AB﹣AC=AF2﹣BF2 , 進(jìn)而可求BD2﹣DA2=ABAC=6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

函數(shù)的一條對(duì)稱軸是

函數(shù)的圖象關(guān)于點(diǎn)(,0)對(duì)稱;

正弦函數(shù)在第一象限為增函數(shù)

,則,其中

以上四個(gè)命題中正確的有    (填寫(xiě)正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)有兩個(gè)零點(diǎn),且.

(1)求的求值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2011年至2017年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求樣本中心點(diǎn)坐標(biāo);

(2)已知兩變量線性相關(guān),求y關(guān)于t的線性回歸方程;

(3)利用(2)中的線性回歸方程,分析2011年至2017年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2019年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】類似于十進(jìn)制中的逢10進(jìn)1,十二進(jìn)制的進(jìn)位原則是逢12進(jìn)1,采用數(shù)字0,1,2,…,9和字母M,N作為計(jì)數(shù)符號(hào),這些符號(hào)與十進(jìn)制的數(shù)字對(duì)應(yīng)關(guān)系如下表:

十二進(jìn)制

0

1

2

3

4

5

6

7

8

9

M

N

十進(jìn)制

0

1

2

3

4

5

6

7

8

9

10

11

例如,因?yàn)?63=3×122+10×12+11,所以十進(jìn)制中的563在十二進(jìn)制中被表示為3MN(12).那么十進(jìn)制中的2008在十二進(jìn)制中被表示為(  )

A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式|x+3|<2x+1的解集為{x|x>m}. (Ⅰ)求m的值;
(Ⅱ)設(shè)關(guān)于x的方程|x﹣t|+|x+ |=m(t≠0)有解,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六組[40,50),[50,60) ...[90,100]后畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:

(1)求成績(jī)落在[70,80)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(2)估計(jì)這次考試的及格率(60分及以上為及格)、平均分、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體中, 平面,,四邊形是邊長(zhǎng)為的菱形.

(1)證明: ;

(2)線段上是否存在點(diǎn),使平面,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(Ⅰ)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+
(參考公式: = =

查看答案和解析>>

同步練習(xí)冊(cè)答案