【題目】已知橢圓 (a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 過F1且與x軸垂直的直線交橢圓于A、B兩點(diǎn),直線AF2與橢圓的另一個(gè)交點(diǎn)為C,若△ABF2的面積是△BCF2的面積的2倍,則橢圓的離心率為(
A.
B.
C.
D.

【答案】A
【解析】解:設(shè)橢圓的左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),
由x=﹣c,代入橢圓方程可得y=± ,
可設(shè)A(﹣c, ),C(x,y),
由△ABF2的面積是△BCF2的面積的2倍,
可得 =2 ,
即有(2c,﹣ )=2(x﹣c,y),
即2c=2x﹣2c,﹣ =2y,
可得x=2c,y=﹣ ,
代入橢圓方程可得, + =1,
由e= ,b2=a2﹣c2 ,
即有4e2+ e2=1,
解得e=
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l: (t為參數(shù),α≠0)經(jīng)過橢圓C: (φ為參數(shù))的左焦點(diǎn)F.
(1)求實(shí)數(shù)m的值;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|×|FB|取最小值時(shí),直線l的傾斜角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

(1)在圖的直角坐標(biāo)系中畫出f(x)的圖象;

(2)若f(t)=2,求t值;

(3)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)gx)=ax2-2ax+1+ba>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記fx)=g(|x|).

(1)求實(shí)數(shù)a,b的值;

(2)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)進(jìn)行自主招生時(shí),需要進(jìn)行邏輯思維和閱讀表達(dá)兩項(xiàng)能力的測試.學(xué)校對(duì)參加測試的200名學(xué)生的邏輯思維成績、閱讀表達(dá)成績以及這兩項(xiàng)的總成績進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:

得出下面四個(gè)結(jié)論:

①甲同學(xué)的閱讀表達(dá)成績排名比他的邏輯思維成績排名更靠前

②乙同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前

③甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前

④乙同學(xué)的總成績排名比丙同學(xué)的總成績排名更靠前

則所有正確結(jié)論的序號(hào)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高三畢業(yè)班甲、乙兩名同學(xué)在連續(xù)的8次數(shù)學(xué)周練中,統(tǒng)計(jì)解答題失分的莖葉圖如下:

(1)比較這兩名同學(xué)8次周練解答題失分的均值和方差的大小,并判斷哪位同學(xué)做解答題相對(duì)穩(wěn)定些;
(2)以上述數(shù)據(jù)統(tǒng)計(jì)甲、乙兩名同學(xué)失分超過15分的頻率作為頻率,假設(shè)甲、乙兩名同學(xué)在同一次周練中失分多少互不影響,預(yù)測在接下來的2次周練中,甲、乙兩名同學(xué)失分均超過15分的次數(shù)X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1≤x≤3},B={x|x>2}.

Ⅰ)分別求A∩B,(RBA;

Ⅱ)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果為10,則判斷框中應(yīng)填入的條件是(

A.k≥﹣3
B.k≥﹣2
C.k<﹣3
D.k≤﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓MA(-4,0),B(1,5),C(6,0)三點(diǎn).

(Ⅰ)求圓M的方程

(Ⅱ)若直線ax-y+5=0(a>0)與圓M相交于PQ兩點(diǎn),是否存在實(shí)數(shù)a,使得弦PQ的垂直平分線l過點(diǎn)E(-2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案