【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實(shí)數(shù)a滿足f(log2a)+f( a)≤2f(1),則a的取值范圍是(
A.
B.[1,2]
C.
D.(0,2]

【答案】A
【解析】解:因?yàn)楹瘮?shù)f(x)是定義在R上的偶函數(shù),
所以f( a)=f(﹣log2a)=f(log2a),
則f(log2a)+f( a)≤2f(1)為:f(log2a)≤f(1),
因?yàn)楹瘮?shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
所以|log2a|≤1,解得 ≤a≤2,
則a的取值范圍是[ ,2],
故選:A.
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;①加法:②減法:③數(shù)乘:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(a>0且a≠1).

(1)求f(x)的定義域;

(2)當(dāng)0<a<1時(shí),判斷f(x)在(2,+∞)的單惆性;

(3)是否存在實(shí)數(shù)a,使得當(dāng)f(x)的定義域?yàn)閇m,n]時(shí),值域?yàn)閇1+logan,1+1ogam],若存在,求出實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若恒成立,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差數(shù)列,求an的通項(xiàng)公式;
(2)設(shè)雙曲線x2 =1的離心率為en , 且e2= ,證明:e1+e2++en

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】奇函數(shù)fx)在區(qū)間(-∞,0)上單調(diào)遞減,且f(-1)=0,則不等式(x-1)fx-1)<0的解集是( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x2+ax+b,實(shí)數(shù)x1x2滿足x1∈(a-1,a),x2∈(a+1,a+2).

(Ⅰ)若a-,求證:fx1)>fx2);

(Ⅱ)若fx1)=fx2)=0,求b-2a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足 ,Sn是{an}的前n項(xiàng)和,則S40=(
A.880
B.900
C.440
D.450

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用秦九韶算法判斷方程x5+x3+x2-1=0[0,2]上是否存在實(shí)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案