【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實(shí)數(shù)a滿足f(log2a)+f( a)≤2f(1),則a的取值范圍是( )
A.
B.[1,2]
C.
D.(0,2]
【答案】A
【解析】解:因?yàn)楹瘮?shù)f(x)是定義在R上的偶函數(shù),
所以f( a)=f(﹣log2a)=f(log2a),
則f(log2a)+f( a)≤2f(1)為:f(log2a)≤f(1),
因?yàn)楹瘮?shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
所以|log2a|≤1,解得 ≤a≤2,
則a的取值范圍是[ ,2],
故選:A.
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;①加法:②減法:③數(shù)乘:④⑤才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(a>0且a≠1).
(1)求f(x)的定義域;
(2)當(dāng)0<a<1時(shí),判斷f(x)在(2,+∞)的單惆性;
(3)是否存在實(shí)數(shù)a,使得當(dāng)f(x)的定義域?yàn)閇m,n]時(shí),值域?yàn)閇1+logan,1+1ogam],若存在,求出實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2 , a3 , a2+2成等差數(shù)列,求an的通項(xiàng)公式;
(2)設(shè)雙曲線x2﹣ =1的離心率為en , 且e2= ,證明:e1+e2++en> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】奇函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減,且f(-1)=0,則不等式(x-1)f(x-1)<0的解集是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,實(shí)數(shù)x1,x2滿足x1∈(a-1,a),x2∈(a+1,a+2).
(Ⅰ)若a<-,求證:f(x1)>f(x2);
(Ⅱ)若f(x1)=f(x2)=0,求b-2a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿足 ,Sn是{an}的前n項(xiàng)和,則S40=( )
A.880
B.900
C.440
D.450
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com