設曲線在點處的切線與軸的交點坐標為
(1)求的表達式;
(2)設,求數(shù)列的前項和

(1)(2)

解析試題分析:(1)利用導數(shù)的幾何意義求解(2)利用分組求和法求解
試題解析:(1),所以,曲線在點處的切線為,令,得;
(2)由(1)知,,故


考點:導數(shù)的概念及其幾何意義,考查了數(shù)列的概念和裂項求和及等比數(shù)列求和方法

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的首項。
(1)求證:是等比數(shù)列,并求出的通項公式;
(2)證明:對任意的;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對任意實數(shù)列,定義它的第項為,假設是首項是公比為的等比數(shù)列.
(1)求數(shù)列的前項和
(2)若,,.
①求實數(shù)列的通項
②證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的前n項和,
(1)求通項公式an;(2)令,求數(shù)列{bn}前n項的和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設an=1+q+q2+…+qn-1(n∈N,q≠±1),An=C n1a1+C n2a2+…+Cnnan,求An(用n和q表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的首項a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項起是以2為公比的等比數(shù)列;
(2)設Sn為數(shù)列{bn}的前n項和,且{Sn}是等比數(shù)列,求實數(shù)a的值;
(3)當a>0時,求數(shù)列{an}的最小項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且有a1=2,Sn=2an-2.
(1)求數(shù)列an的通項公式;
(2)若bn=nan,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列{an}的所有項均為正數(shù),首項a1=1,且a4,3a3a5成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{an+1λan}的前n項和為Sn,若Sn=2n-1(n∈N*),求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列{an}的前n項和為Sn,已知ban-2n=(b-1)Sn.
(1)證明:當b=2時,{ann·2n-1}是等比數(shù)列;
(2)求{an}的通項公式.

查看答案和解析>>

同步練習冊答案