【題目】設(shè)為奇函數(shù),為實(shí)常數(shù).

(1)求的值;

(2)證明:在區(qū)間內(nèi)單調(diào)遞增;

(3)若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)證明見(jiàn)解析;(3).

【解析】試題分析:(1)因?yàn)楹瘮?shù)是奇函數(shù),滿(mǎn)足,即 ,求得的值;(2)根據(jù)(1)的結(jié)果可知 ,根據(jù)函數(shù)單調(diào)性的定義證明 上是減函數(shù),再利用復(fù)合函數(shù)單調(diào)性的判斷原則判斷函數(shù)的單調(diào)性;(3)設(shè),根據(jù)(2)的結(jié)果可知是單調(diào)遞增函數(shù),那么將恒成立問(wèn)題轉(zhuǎn)化為 ,可求的取值范圍.

試題解析:(1)∵函數(shù)是奇函數(shù),

,

,

,

,

經(jīng)檢驗(yàn),.

(2)由(1)可知,

,由函數(shù)單調(diào)性的定義可證明上為減函數(shù),

上為增函數(shù).

(3)設(shè),

則函數(shù)上為增函數(shù),

對(duì)恒成立,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間的一臺(tái)機(jī)床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為 ,…, ,測(cè)量其長(zhǎng)度(單位: ),得到如表中數(shù)據(jù):

其中長(zhǎng)度在區(qū)間內(nèi)的零件為一等品.

(1)從上述8個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(2)從一等品零件中,隨機(jī)抽取3個(gè).

①用零件的編號(hào)列出所有可能的抽取結(jié)果;

②求這3個(gè)零件長(zhǎng)度相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0
(1)求m的取值范圍;
(2)圓C與直線(xiàn)x+2y﹣4=0相交于M,N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車(chē)”在很多城市相繼出現(xiàn).某運(yùn)營(yíng)公司為了了解某地區(qū)用戶(hù)對(duì)其所提供的服務(wù)的滿(mǎn)意度,隨機(jī)調(diào)查了40個(gè)用戶(hù),得到用戶(hù)的滿(mǎn)意度評(píng)分如下:

用系統(tǒng)抽樣法從40名用戶(hù)中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評(píng)分?jǐn)?shù)據(jù)為92.

(1)請(qǐng)你列出抽到的10個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);

(2)計(jì)算所抽到的10個(gè)樣本的均值和方差;

(3)在(2)條件下,若用戶(hù)的滿(mǎn)意度評(píng)分在之間,則滿(mǎn)意度等級(jí)為“級(jí)”.試應(yīng)用樣本估計(jì)總體的思想,估計(jì)該地區(qū)滿(mǎn)意度等級(jí)為“級(jí)”的用戶(hù)所占的百分比是多少?(精確到)

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2AB,F(xiàn)為CE的中點(diǎn).

(1)求直線(xiàn)AF與平面ACD所成的角;
(2)求證:平面BCE⊥平面DCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,BC邊上的高所在的直線(xiàn)方程為x﹣2y+1=0,∠A的平分線(xiàn)所在直線(xiàn)的方程為y=0.

(1)求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知?jiǎng)訄AS過(guò)定點(diǎn)P(﹣2 ),且與定圓Q:(x﹣2 2+y2=36相切,記動(dòng)圓圓心S的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)設(shè)曲線(xiàn)C與x軸,y軸的正半軸分別相交于A,B兩點(diǎn),點(diǎn)M,N為橢圓C上相異的兩點(diǎn),其中點(diǎn)M在第一象限,且直線(xiàn)AM與直線(xiàn)BN的斜率互為相反數(shù),試判斷直線(xiàn)MN的斜率是否為定值.如果是定值,求出這個(gè)值;如果不是定值,說(shuō)明理由;
(3)在(2)條件下,求四邊形AMBN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣k ln x,k>0.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)證明:若f(x)存在零點(diǎn),則f(x)在區(qū)間(1, ]上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

①過(guò)點(diǎn)(-1,2)的直線(xiàn)方程一定可以表示為y-2=k(x+1)的形式(k∈R);

②過(guò)點(diǎn)(-1,2)且在x軸、y軸截距相等的直線(xiàn)方程是xy-1=0;

③過(guò)點(diǎn)M(-1,2)且與直線(xiàn)lAxByC=0(AB≠0)垂直的直線(xiàn)方程是B(x+1)+A(y-2)=0;

④設(shè)點(diǎn)M(-1,2)不在直線(xiàn)lAxByC=0(AB≠0)上,則過(guò)點(diǎn)M且與l平行的直線(xiàn)方程是A(x+1)+B(y-2)=0;

⑤點(diǎn)P(-1,2)到直線(xiàn)axya2a=0的距離不小于2.

以上命題中,正確的序號(hào)是________

查看答案和解析>>

同步練習(xí)冊(cè)答案