某活動將在遼寧沈陽舉行,組委會在沈陽某大學招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm),身高在175 cm以上(包括175 cm)定義為“高個子”,身高在175 cm以下(不包括175 cm)定義為“非高個子”.

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率;
(2)若從身高180 cm以上(包括180 cm)的志愿者中選出男、女各一人,求這2人身高相差5 cm以上的概率.

(1)(2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

甲乙兩人進行乒乓球比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為,乙在每局中獲勝的概率為,且各局勝負相互獨立,比賽停止時一共已打局:
(1)列出隨機變量的分布列;
(2)求的期望值E

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

假設某班級教室共有4扇窗戶,在每天上午第三節(jié)課上課預備鈴聲響起時,每扇窗戶或被敞開或被關閉,且概率均為0.5.記此時教室里敞開的窗戶個數(shù)為X.
(1)求X的分布列;
(2)若此時教室里有兩扇或兩扇以上的窗戶被關閉,班長就會將關閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時該教室里敞開的窗戶個數(shù)為Y,求Y的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

市民李先生居住在甲地,工作在乙地,他的小孩就讀的小學在丙地,三地之間的道路情況如圖所示.假設工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機的.同一條道路去程與回程是否堵車相互獨立.假設李先生早上需要先開車送小孩去丙地小學,再返回經甲地趕去乙地上班.假設道路A,B,D上下班時間往返出現(xiàn)擁堵的概率都是,道路C,E上下班時間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學和上班的都會遲到.

(1)求李先生的小孩按時到校的概率;
(2)李先生是否有七成把握能夠按時上班?
(3)設X表示李先生下班時從單位乙到達小學丙遇到擁堵的次數(shù),求X的均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司研制出一種新型藥品,為測試該藥品的有效性,公司選定個藥品樣本分成三組,測試結果如下表:

分組



藥品有效



藥品無效



已知在全體樣本中隨機抽取個,抽到組藥品有效的概率是
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取個測試結果,問應在組抽取樣本多少個? [來源:學優(yōu)]
(2)已知,,求該藥品通過測試的概率(說明:若藥品有效的概率不小于%,則認為測試通過).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分,該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊.
(1)求該射手恰好命中兩次的概率;
(2)求該射手的總得分X的分布列及數(shù)學期望E(X);
(3)求該射手向甲靶射擊比向乙靶射擊多擊中一次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,,點的坐標為.
(1)求當時,點滿足的概率;
(2)求當時,點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某足球俱樂部2013年10月份安排4次體能測試,規(guī)定:按順序測試,一旦測試合格就不必參加以后的測試,否則4次測試都要參加。若運動員小李4次測試每次合格的概率組成一個公差為的等差數(shù)列,他第一次測試合格的概率不超過,且他直到第二次測試才合格的概率為
(Ⅰ)求小李第一次參加測試就合格的概率P1;
(2)求小李10月份參加測試的次數(shù)x的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

淮南八公山某種豆腐食品是經過A、B、C三道工序加工而成的,A、B、C工序的產品合格率分別為、、.已知每道工序的加工都相互獨立,三道工序加工的產品都為合格時產品為一等品;有兩次合格為二等品;其它的為廢品,不進入市場.
(Ⅰ)正式生產前先試生產2袋食品,求這2袋食品都為廢品的概率;
(Ⅱ)設ξ為加工工序中產品合格的次數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案