【題目】已知橢圓的長軸與短軸比值是2,橢圓C過點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過點(diǎn)作圓x2+y2=1的切線交橢圓CA,B兩點(diǎn),記AOBO為坐標(biāo)原點(diǎn))的面積為SAOB,將SAOB表示為m的函數(shù),并求SAOB的最大值

【答案】12,m∈(-∞,-1][1+∞);SAOB的最大值為1

【解析】

(1) 由已知可知,及橢圓C過點(diǎn),代入橢圓方程即可求得,進(jìn)而得出結(jié)果.

(2) 由題設(shè)知切線的斜率存在,設(shè)切線的方程為,與橢圓方程聯(lián)立求得弦長,由于與圓相切,可得=1,化簡可得,利用基本不等式化簡即可求得結(jié)果.

解:(1)∵橢圓的長軸與短軸比值是2,

,設(shè)橢圓C的方程為:,

∵橢圓C過點(diǎn),

,∴,

∴橢圓C的標(biāo)準(zhǔn)方程為.

2)由題意知,.

由題設(shè)知切線的斜率存在,設(shè)切線的方程為

,得,

設(shè)A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1)(x2y2),

又∵與圓相切,

=1,

=

=

=,

,

(當(dāng)且僅當(dāng)時(shí)取等號)

∴當(dāng)時(shí),SAOB的最大值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,為線段的中點(diǎn)(如圖1).將沿折起到的位置,使得平面平面為線段的中點(diǎn)(如圖2).

(Ⅰ)求證:;

(Ⅱ)求證:平面

(Ⅲ)當(dāng)四棱錐的體積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定每年的日以后的天為當(dāng)年的暑假.某鋼琴培訓(xùn)機(jī)構(gòu)對位鋼琴老師暑假一天的授課量進(jìn)行了統(tǒng)計(jì),如下表所示:

授課量(單位:小時(shí))

頻數(shù)

培訓(xùn)機(jī)構(gòu)專業(yè)人員統(tǒng)計(jì)近年該校每年暑假天的課時(shí)量情況如下表:

課時(shí)量(單位:天)

頻數(shù)

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

1)估計(jì)位鋼琴老師一日的授課量的平均數(shù);

2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當(dāng)?shù)厥谡n價(jià)為/小時(shí),每天的各類生活成本為/天;若不授課,不計(jì)成本,請依據(jù)往年的統(tǒng)計(jì)數(shù)據(jù),估計(jì)一位鋼琴老師天暑假授課利潤不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育局為了監(jiān)控某校高一年級的素質(zhì)教育過程,從該校高一年級16個(gè)班隨機(jī)抽取了16個(gè)樣本成績,制表如下:

抽取次序

1

2

3

4

5

6

7

8

測評成績

95

96

96

90

95

98

98

97

抽取次序

9

10

11

12

13

14

15

16

測評成績

97

95

96

98

99

96

99

96

為抽取的第個(gè)學(xué)生的素質(zhì)教育測評成績,,經(jīng)計(jì)算得,,.以下計(jì)算精確到0.01.

1)設(shè)為抽取的16個(gè)樣本的成績,用頻率估計(jì)概率,求的分布列、數(shù)學(xué)期望和標(biāo)準(zhǔn)方差;

2)在抽取的樣本成績中,如果出現(xiàn)了在之外的成績,就認(rèn)為本學(xué)期的素質(zhì)教育過程可能出現(xiàn)了異常情況,需對本學(xué)期的素質(zhì)教學(xué)過程進(jìn)行反思,同時(shí)對下學(xué)期的素質(zhì)教育過程提出指導(dǎo)性的建議.從該校抽樣的結(jié)果來看,是否需對本學(xué)期的素質(zhì)教學(xué)過程進(jìn)行反思,同時(shí)對下學(xué)期的素質(zhì)教育過程提出指導(dǎo)性的建議?

3)列出不小于的所有樣本成績,設(shè)列出的這些成績的中位數(shù)為,每次從列出的這些成績中隨機(jī)抽取1個(gè)成績,有放回地連續(xù)抽取3次,求恰好有2次抽得的成績?yōu)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱中,為棱的中點(diǎn).

1)求證:平面

2)若平面,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知四邊形是菱形,平面平面,,.

1)求證:平面平面.

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當(dāng)時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)到兩點(diǎn),的距離之和為4,點(diǎn)軸上的射影是C.

1)求動點(diǎn)的軌跡方程;

2)過點(diǎn)的直線交點(diǎn)的軌跡于點(diǎn),交點(diǎn)的軌跡于點(diǎn),求的最大值.

查看答案和解析>>

同步練習(xí)冊答案