等差數(shù)列{an}中,a10<0,a11>0,且a11>|a10|,Sn為數(shù)列{an}的前n項和,則使Sn>0的n的最小值為( 。
A、21B、20C、10D、11
分析:由題意可得:由等差數(shù)列的性質(zhì)可得:S20=
20(a10+a11)
2
>0,S19=19•a10<0,
所以使Sn>0的n的最小值為20.
解答:解:由題意可得:因為a10<0,a11>0,且a11>|a10|,
所以由等差數(shù)列的性質(zhì)可得:S20=
20(a10+a11)
2
>0,S19=19•a10<0,
所以使Sn>0的n的最小值為20.
故選B.
點評:解決此類問題的關鍵是熟練掌握等差數(shù)列的有關性質(zhì)與等差數(shù)列的前n項和的公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項和Sn<0時,n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,設S1=10,S2=20,則S10的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習冊答案