【題目】已知曲線的方程為:,為常數(shù))

(Ⅰ)判斷曲線的形狀;

(Ⅱ)設直線與曲線交于不同的兩點,且,求曲線的方程.

【答案】(Ⅰ)曲線是以點為圓心,以為半徑的圓(Ⅱ)

【解析】

試題分析:(1)把方程化為圓的標準方程,可得結(jié)論;(2)由圓C過坐標原點,且|OM|=|ON|,可得圓心(a,)在MN的垂直平分線上,從而求出a,再判斷a=-2不合題意即可

試題解析:(Ⅰ)將曲線的方程化為:

,

可知曲線是以點為圓心,以為半徑的圓;……………………5

(Ⅱ)原點坐標滿足方程,所以圓過坐標原點,

,圓心的垂直平分線上,故

,

時,圓心坐標為,圓的半徑為,圓心到直線的距離,直線與圓相離,不合題意舍去;

時,符合條件,這時曲線的方程為.…………………12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標原點,若橢圓與曲線的交點分別為上),且兩點滿足

1)求橢圓的標準方程;

2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線軸、軸上的截距分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的圓臺中,是下底面圓的直徑是上底面圓的直徑,是圓臺的一條母線

(1)已知,分別為,的中點,求證平面;

(2)已知,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】表示中的最大值,如.已知函數(shù),.

(1)設,求函數(shù)上零點的個數(shù);

(2)試探究是否存在實數(shù),使得恒成立?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形中,,沿將梯形折起,使得平面⊥平面.

(1)證明:;

(2)求三棱錐的體積;

(3)求直線。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

)若在區(qū)間上為增函數(shù),求的取值范圍;

)當時,證明:

)當時,斷方程是否有實數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)證明:當時,關于的不等式恒成立;

(3)若正實數(shù)滿足,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,平面平面,,.設分別為中點.

(1)求證:平面;

(2)求證:平面

(3)試問在線段上是否存在點,使得過三點的平面內(nèi)的任一條直線都與平面平行?

若存在,指出點的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設事件A表示“關于的一元二次方程有實根”,其中,為實常數(shù).

(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機數(shù),為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;

(Ⅱ)若為區(qū)間[0,5]上的均勻隨機數(shù),為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

同步練習冊答案