已知函數(shù).若過點可作曲線的切線有三條,求實數(shù)的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)的圖像過原點,,
的導(dǎo)函數(shù)為,且,
(1)求函數(shù),的解析式;
(2)求的極小值;
(3)是否存在實常數(shù)和,使得和若存在,求出和的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)當(dāng)時,在上恒成立,求實數(shù)的取值范圍;
(2)當(dāng)時,若函數(shù)在上恰有兩個不同零點,求實數(shù)的取值范圍;
(3)是否存在實數(shù),使函數(shù)f(x)和函數(shù)在公共定義域上具有相同的單調(diào)區(qū)間?若存在,求出的值,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
已知二次函數(shù) (,c為常數(shù)且1《c《4)的導(dǎo)函數(shù)的圖象如圖所示:
(1).求的值;
(2)記,求在上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題14分)已知函數(shù)f (x) = ax3 +x2 -ax,其中a,x∈R.
(Ⅰ)若函數(shù)f (x)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求a的取值范圍;
(Ⅱ)直接寫出(不需給出運(yùn)算過程)函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)如果存在a∈(-∞,-1],使得函數(shù), x∈[-1, b](b > -1),在x = -1處取得最小值,試求b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時,若存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知二次函數(shù)
為常數(shù));.若直線1、2與函數(shù)的圖象以及2,y軸與函數(shù)的圖象
所圍成的封閉圖形如陰影所示.
(1)求、b、c的值;
(2)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;
(3)若問是否存在實數(shù)m,使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分) 已知函數(shù) .
(Ⅰ)若函數(shù)在區(qū)間其中a >0,上存在極值,求實數(shù)a的取值范圍;
(Ⅱ)如果當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的極大值; (2)
(3)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的分界線。設(shè),試探究函數(shù)是否存在“分界線”?若存在,請給予證明,并求出的值;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com