考點:基本不等式
專題:證明題,不等式的解法及應(yīng)用
分析:由a+b=1可知,得到
+
=
+,再利用基本不等式證明即可.
解答:
證明:由于a>0,b>0,且a+b=1,
則
+
=
+=5+
+≥5+2
=9,
當(dāng)且僅當(dāng)
=即a=
,b=
時,等號成立,
所以
+
≥9.
點評:此題主要考查不等式的證明問題,其中涉及到基本不等式的應(yīng)用,注意等號成立的條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)學(xué)歸納法證明“1+a+a
2+…+a
n=
(a≠1,n∈N
*)”時,驗證當(dāng)n=1時,等式的左邊為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
當(dāng)x>1時,試比較x+lnx與e2x的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知a,b,c是非零實數(shù),且a
2+b
2+c
2=1.
(1)證明:
++≥36;
(2)若不等式
++≥|m|+|m-2|對一切a,b,c恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
人壽保險很重視某一年齡段投保人的死亡率.假設(shè)每個投保人能活到65歲的概率為0.6,能活到75歲的概率為0.2,問:
(1)現(xiàn)有一位65歲的投保人,求他能活到75歲的概率;
(2)現(xiàn)有3名恰好65歲的投保人,每人投保6萬元,若活不到75歲,則每位將獲得8萬元賠償(不考慮其它因素),求保險公司獲得凈收益X的分布列及期望(凈收入=收入-賠償).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N*都有a13+a23+a33+…+an3=Sn2+2Sn,其中Sn為數(shù)列{an}的前n項和.
(Ⅰ) 求a1,a2;
(Ⅱ) 求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)bn=3n+(-1)n-1λ•2an,對任意的n∈N*,都有bn+1>bn恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在直三棱柱ABC-A
1B
1C
1(側(cè)棱和底面垂直的棱柱)中,平面A
1BC⊥側(cè)面A
1ABB
1,AB=BC=AA
1=3,線段AC、A
1B上分別有一點E、F且滿足2AE=EC,2BF=FA
1.
(1)求證:AB⊥BC;
(2)求點E到直線A
1B的距離;
(3)求二面角F-BE-C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
解不等式:
(1)x2-2x-3>0
(2)2x2-x-1<0.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)p:函數(shù)y=(a-1)x+1在x∈(-∞,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+ax+1與x軸交于不同的兩點.
(1)若p為真且q為真,求a的取值范圍;
(2)若p與q中一個為真一個為假,求a的取值范圍.
查看答案和解析>>