如圖,正方形
ABCD,有一直徑為BC的半圓,BC=2cm,現(xiàn)有兩點(diǎn)E、F,分別從點(diǎn)B、點(diǎn)A同時(shí)出發(fā),點(diǎn)E沿線段BA以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)F沿折線A-D-C以2 cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)E離開(kāi)點(diǎn)B的時(shí)間為t s.(1)
當(dāng)t為何值時(shí),線段EF與BC平行;(2)
設(shè)1<t<2,當(dāng)t為何值時(shí),EF與半圓相切?(3)
當(dāng)時(shí),設(shè)EF與AC相交于點(diǎn)P,問(wèn)點(diǎn)E、F運(yùn)動(dòng)時(shí),點(diǎn)P的位置是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)給予證明,并求AP∶PC的值.
解: (1)∵四邊形ABCD為正方形,∴AB∥DC,而EF∥BC,∴BE=FC.∵BE=t,CF=4-2t,∴t=4-2t,得,即當(dāng)時(shí),線段EF∥BC.(2) 設(shè)E、F出發(fā)t s時(shí),EF與半圓相切,如圖(3),∴EF=EM +MF=EB+FC(切線長(zhǎng)定理).作 FK⊥AB,進(jìn)而KB=FC.又 ∵,于是 ,即 ,解之,得.∵1 <t<2,∴,即當(dāng) 時(shí),EF與半圓相切.(3) 當(dāng)時(shí),點(diǎn)P的位置不會(huì)發(fā)生變化.事實(shí)上,設(shè) 時(shí),E、F出發(fā)t s后的線段位置,如圖(4),則 ,而由 AB∥DC,有△APE∽△CPF,可知 ,這個(gè)比值顯然與t無(wú)關(guān),因而點(diǎn)P的位置不會(huì)發(fā)生變化. |
分析:本題是典型的運(yùn)動(dòng)幾何問(wèn)題,用運(yùn)動(dòng)變化觀點(diǎn)分析與看待此問(wèn)題.對(duì)于(1)與(2)的解答均是先假設(shè)結(jié)論成立,逆向思考從而求出t的值.對(duì)于(3)討論是否與t有關(guān),可判定點(diǎn)P的位置是否發(fā)生變化. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
4 |
| ||
4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com