精英家教網 > 高中數學 > 題目詳情
求證:
tanα-sinα
tanαsinα
=
tanαsinα
tanα+sinα
考點:三角函數恒等式的證明
專題:三角函數的求值
分析:轉化為證tan2αsin2α=tan2α-sin2α,由三角函數公式證明左邊=右邊可得.
解答: 證明:要證
tanα-sinα
tanαsinα
=
tanαsinα
tanα+sinα
,
只需證(tanα-sinα)(tanα+sinα)=tan2αsin2α,
即證tan2αsin2α=tan2α-sin2α,
∵tan2αsin2α=tan2α(1-cos2α)
=tan2α-tan2αcos2α=tan2α-
sin2α
cos2α
cos2α
=tan2α-sin2α=右邊,
tanα-sinα
tanαsinα
=
tanαsinα
tanα+sinα
成立
點評:本題考查三角函數恒等式的證明,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數f(x)=x+3,則f′(x)=( 。
A、xB、3C、1D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

四棱錐P-ABCD中,PA⊥底面ABCD,PA=AB=AD=
1
2
CD,AB∥CD,∠ADC=90°.
(1)在側棱PC上是否存在一點Q,使BQ∥面PAD?說明理由.
(2)求PB與面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(2,1)在拋物線C1:x2=2py(p>0)上,直線l過點Q(0,2)且與拋物線C1交于A、B兩點.
(1)求拋物線C1的方程及弦AB中點M的軌跡C2的方程;
(2)若直線l1、l2分別為C1、C2的切線,且l1∥l2,求l1到l2的最近距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C對應邊分別是a,b,c,c=2,∠C=
π
3

(1)若sinA=2sinB,求△ABC面積;
(2)若sinC+sin(B-A)=2sin2A,求sinA.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{bn}是等差數列,b1=1,b1+b2+…+b10=145.
(1)求數列{bn}的通項公式bn
(2)設數列{an}滿足an=2(2+bn,記Sn為數列{an}的前n項和,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

某研究性小組有六名同學,這六名同學排著一排照相,則同學甲與同學乙相鄰的排法有多少種?若從六名同學中選四人參加班級4×100接力比賽,則同學丙不跑第一棒的安排方法有多少種?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a1=
1
3
,公比q=
1
3
,Sn為{an}的前n項和
(Ⅰ)求Sn
(Ⅱ)設bn=log3a1+log3a2+…+log3an,求數列{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

某人擺一個攤位賣小商品,一周內出攤天數x與盈利y(百元),之間的一組數據關系見表:
x23456
y2.23.85.56.57.0
已知
5
i=1
xi2=90,
5
i=1
xiyi=112.3,
(Ⅰ)在如圖坐標系中畫出散點圖;
(Ⅱ)計算
.
x
.
y
,并求出線性回歸方程;
(Ⅲ)在第(Ⅱ)問條件下,估計該攤主每周7天要是天天出攤,盈利為多少?

查看答案和解析>>

同步練習冊答案