【題目】定義一個“希望結(jié)合”()簡稱如下:為一個非空集合,它滿足條件“若,則”。試問:在集合中,一共有多少個“希望子集合”?請說明理由。
【答案】
【解析】
下面用“”表示與的兩倍關系.注意到
顯然,是否在中不影響成為希望子集(因為這些數(shù)不能被整除,且每個數(shù)的兩倍均大于),所以,這個數(shù)的歸屬方案有種.
在①中,與不能同時取,故有種方案.
同理,在②、③、④中,也各有種方案.
下面采用遞推算法.
在⑤中,若取,則不能取,此時,可取亦可不取,有兩種方案:若不取,則由①知,關于和,共有種方案(和的情況與①相同).因此,在⑤中共有種方案.
同理,在⑥中共有種方案.
在⑦中,若取,則不能取,由①知關于和,有種方案;若不取,則由⑤知,關于有種方案.因此,在⑦中共有種方案.
在⑧中,若取,則不能取,由⑤知關于,有種方案;若不取,則由⑦知關于,有種方案.因此,在⑧中共有種方案.
再考慮到除去空集(即都不。,因此所求的的希望子集的個數(shù)為.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的命題是( )
A.以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設,將其變換后得到線性方程,則,的值分別是和0.3;
B.事件為必然事件,則事件、是互為對立事件;
C.設隨機變量,若,則;
D.甲、乙、丙、丁4個人到4個景點旅游,每人只去一個景點,設事件“4個人去的景點各不相同”,事件“甲獨自去一個景點”,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,)的圖像經(jīng)過點,且關于直線對稱,則下列結(jié)論正確的是( )
A. 在上是減函數(shù)
B. 函數(shù)的最小正周期為
C. 的解集是,
D. 的一個對稱中心是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過直線上的點作橢圓的切線,切點分別為,聯(lián)結(jié).
(1)當點在直線上運動時,證明:直線恒過定點;
(2)當時,定點平分線段.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】影片《紅海行動》里的“蛟龍突擊隊”在奉命執(zhí)行撤僑過程中,海軍艦長要求隊員們依次完成6項任務,并對任務的順序提出了如下要求:重點任務A必須排在第2位,且任務E、F必須排在一起,則這6項任務的不同安排方案共有( )
A.18種B.36種C.144種D.216種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,底面為菱形, , , 與相交于點,四邊形為直角梯形, , , ,平面底面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com