(本小題滿分12分)
如圖,棱長(zhǎng)為2的正方體中,E,F滿足

(Ⅰ)求證:EF//平面AB;
(Ⅱ)求證:EF;
(1)要證明線面平行,一般通過(guò)線線平行來(lái)證明,E、F分別為DD1、BD的中點(diǎn),則可知中位線性質(zhì)則EF∥BD1,進(jìn)而根據(jù)線面平行的判定定理來(lái)證明。
(2)根據(jù)題意,由于AB⊥面BB1C1C 則可知AB⊥B1C且有B1C⊥BC1,AB∥BC1,那么得到B1C⊥面ABC1D,然后
結(jié)合線面垂直的性質(zhì)定理來(lái)證明線線垂直。

試題分析:解:

⑴∵
∴E、F分別為DD1、BD的中點(diǎn)…………2分
連結(jié)BD1,則EF∥BD1………………4分
……………………5分
∴EF∥面ABC1D1……………………6分
⑵正方體ABCD-A1B1C1D1
∵AB⊥面BB1C1C  ∴AB⊥B1C…………8分
又正方形BB1C1C中,B1C⊥BC1,AB∥BC1=B……10分
∴B1C⊥面ABC1D1
∴B1C⊥BD1
∵EF∥BD1
∴EF⊥B1C……………………12分
點(diǎn)評(píng):解決空間中線線的平行和垂直的關(guān)鍵是對(duì)于線面的平行性質(zhì)定理和線面的垂直的性質(zhì)定理的熟練的運(yùn)用,同時(shí)要結(jié)合平行的傳遞性來(lái)研究其它 的垂直問(wèn)題。這類問(wèn)題的解決一般要轉(zhuǎn)化到一個(gè)平面中來(lái)分析,轉(zhuǎn)化思想是立體幾何的思想體現(xiàn)。中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖在三棱錐S,,.

(1)證明。
(2)求側(cè)面與底面所成二面角的大小。
(3)求異面直線SC與AB所成角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖:,

(1)求的大;
(2)當(dāng)時(shí),判斷的形狀,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果平面的一條斜線和它在這個(gè)平面上的射影的方向向量分別是那么這條斜線與平面所成的角是 ____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)如圖,在三棱錐S—ABC中,是邊長(zhǎng)為4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分別為AB、SB的中點(diǎn)。

⑴ 求證:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求點(diǎn)B到平面CMN的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若兩直線相交,且∥平面,則的位置關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分16分)如圖:AD=2,AB=4的長(zhǎng)方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).

(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問(wèn):在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面,, E、F分別為的中點(diǎn),

(Ⅰ)求證:平面平面
(Ⅱ)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點(diǎn).

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案