精英家教網 > 高中數學 > 題目詳情
求適合下列條件的曲線的標準方程:
(1)a=6,c=3,焦點在y軸上的橢圓
(2)過點M(
2
,1)
,且焦點為F1(-
2
,0)
的橢圓
(3)一條漸近線方程是3x+4y=0,一個焦點是(5,0)的雙曲線.
(1)a=6,c=3,∴b2=a2-c2=27,又焦點在y軸上∴方程為
y2
36
+
x2
27
=1

(2)由已知,得出另一焦點F2(
2
,0)
,c=
2

根據橢圓的定義,2a=|MF1|+|MF2|=4,a=2,∴b2=a2-c2=2,
又焦點在x軸上,
∴方程為
x2
4
+
y2
2
=1

(3)一條漸近線方程是3x+4y=0,即y=-
3
4
x,一個焦點是(5,0)
b
a
=
3
4
c2=a2+b2=25

解得a=4,b=3,雙曲線方程為
x2
16
-
y2
9
=1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知的頂點在橢圓上,在直線上,且
(1) 當邊通過坐標原點時,求的長及的面積;
(2) 當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知△ABC的周長等于18,B、C兩點坐標分別為(0,4),(0,-4),求A點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1)、C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數列.
(Ⅰ)求該橢圓的方程;
(Ⅱ)求弦AC中點的橫坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,F1,F2是離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,直線l:x=-
1
2
將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(1)雙曲線與橢圓
x2
27
+
y2
36
=1
有相同焦點,且經過點(
15
,4),求其方程.
(2)橢圓過兩點(
6
,1),(-
3
,-
2
),求其方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

與雙曲線
x2
3
-
y2
1
=1
共焦點且過點(2
3
,
3
)
的橢圓方程為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓
x2
4
+
y2
5
=1
的一個焦點坐標是( 。
A.(3,0)B.(0,3)C.(1,0)D.(0,1)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的焦點在x軸上,長軸長為12,離心率為
1
3
,求橢圓的標準方程.

查看答案和解析>>

同步練習冊答案