由a1=1,d=2確定的等差數(shù)列{an},當(dāng)an=2013時(shí),序號(hào)n等于( 。
分析:把已知數(shù)據(jù)代入等差數(shù)列的通項(xiàng)公式可得關(guān)于n的方程,解方程可得.
解答:解:由等差數(shù)列的通項(xiàng)公式可得an=a1+(n-1)d,
代入數(shù)據(jù)可得2013=1+2(n-1),解得n=1007
故選C
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)已知{an}是公差d大于零的等差數(shù)列,對(duì)某個(gè)確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=2,當(dāng)k=3時(shí),M=100,寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)若數(shù)列{an}的各項(xiàng)均為整數(shù),對(duì)給定的常數(shù)d,當(dāng)數(shù)列由已知條件被唯一確定時(shí),證明a1≤0;
(3)求S=ak+1+ak+2+…+a2k+1的最大值及此時(shí)數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年上海市寶山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知{an}是公差d大于零的等差數(shù)列,對(duì)某個(gè)確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=2,當(dāng)k=3時(shí),M=100,寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)若數(shù)列{an}的各項(xiàng)均為整數(shù),對(duì)給定的常數(shù)d,當(dāng)數(shù)列由已知條件被唯一確定時(shí),證明a1≤0;
(3)求S=ak+1+ak+2+…+a2k+1的最大值及此時(shí)數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案