下列各點中,不在方程x2-xy+2y+1=0表示的曲線上的點是( 。
A、(1,-2)
B、(-2,1)
C、(-3,-2)
D、(3,10)
考點:曲線與方程
專題:計算題,直線與圓
分析:將選項代入方程x2-xy+2y+1=0,如果等式成立,那個點就是曲線上的,等式不成立就不在,故可判斷.
解答: 解:將選項代入方程x2-xy+2y+1=0,可得A,C,D滿足,B不滿足,即(1,-2)、(-3,-2)、(3,10)在曲線上,(-2,1)不在曲線上,
故選B.
點評:本題主要考查曲線與方程的關(guān)系,考查純粹性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

集合A={(x,y)|函數(shù)y=f(x),x∈(0,1)},B={(x,y)|x=a,a∈R,a是常數(shù)},則A∩B中元素個數(shù)是( 。
A、至少有1個
B、有且只有1個
C、可能2個
D、至多有1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)拋物線C1,雙曲線C2的焦點均在x軸上,C1的頂點與C2的中心均為原點,從每條曲線上至少取一個點,將其坐標記錄于下表中:
x1
2
3
23
y2
2
2
242
6
則C1的方程是
 
;C2的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,側(cè)面PA⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)求證:DM∥平面PCB;
(Ⅲ)求二面角A-BC-P的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

比較大。篶os
14
 
sin(-
15π
8
)(填“>”或“<”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個動點P,Q分別在兩條直線l1:y=x和l2:y=-x上運動,且它們的橫坐標分別為角θ的正弦,余弦,θ∈[0,π].記
OM
=
OP
+
OQ
,求動點M的軌跡的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(
π
2
+α)=2sin(α-
π
2
).
(1)求
4sinα-2cosα
3sinα+5cosα
的值.
(2)求
1
4
sin2α+
1
3
sinαcosα+
1
2
cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=3x+4的反函數(shù)f-1(x),則f-1(1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
2-2sin(α+
4
)cos(α+
π
4
)
cos4α-sin4α
=
1+tanα
1-tanα

查看答案和解析>>

同步練習冊答案