求證:lnx<x<ex時(shí),x>0.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:構(gòu)造函數(shù),分別設(shè)設(shè)f(x)=lnx-x;g(x)=x-ex,分別求導(dǎo),求出函數(shù)的最大值與0的關(guān)系,即可證明
解答: 證:設(shè)f(x)=lnx-x;
∴f′(x)=
1
x
-1=
1-x
x
,
令f′(x)=0,解得x=1,
當(dāng)f′(x)>0時(shí),即0<x<1時(shí),函數(shù)f(x)單調(diào)遞增,
當(dāng)f′(x)>0時(shí),即x>1時(shí),函數(shù)f(x)單調(diào)遞減,
故當(dāng)x=1時(shí)函數(shù)有最大值,f(x)max=f(1)=-1,
故f(x)=lnx-x<0;
∴l(xiāng)nx<x;
令g(x)=x-ex,
g′(x)=1-ex,
∵x>0,
∴g′(x)<0;
∴函數(shù)g(x)在(0,+∞)上單調(diào)遞減,
∴g(x)<1-e<0;
∴x<ex,
∴l(xiāng)nx<x<ex,
點(diǎn)評(píng):本題考查函數(shù)導(dǎo)數(shù)符號(hào)和函數(shù)單調(diào)性的關(guān)系,以及通過(guò)求導(dǎo),利用函數(shù)單調(diào)性證明不等式的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(4,0)是圓x2+y2=36內(nèi)的一點(diǎn),A,B是圓上兩動(dòng)點(diǎn),且滿(mǎn)足∠APB=90°.
(1)求AB中點(diǎn)R的軌跡;
(2)求矩形APBQ的頂點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面內(nèi),垂直于同一條直線(xiàn)的兩條直線(xiàn)平行.在空間中可以類(lèi)比得出以下一組命題:
①在空間中,垂直于同一直線(xiàn)的兩條直線(xiàn)平行;
②在空間中,垂直于同一直線(xiàn)的兩個(gè)平面平行;
③在空間中,垂直于同一平面的兩條直線(xiàn)平行;
④在空間中,垂直于同一平面的兩個(gè)平面平行其中,
正確的結(jié)論的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=2x+1與橢圓C:
x2
4
+
y2
2
=1的相交弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1、F2,其上的動(dòng)點(diǎn)M到一個(gè)焦點(diǎn)的距離最大為3,點(diǎn)M對(duì)F1、F2的張角最大為60°.
(1)求橢圓C的方程;
(2)設(shè)橢圓C在x軸上的兩個(gè)頂點(diǎn)分別為A、B,點(diǎn)P是橢圓C內(nèi)的動(dòng)點(diǎn),且PA•PB=PO2,求
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸上,已知拋物線(xiàn)C上橫坐標(biāo)為3的點(diǎn)到C的準(zhǔn)線(xiàn)的距離等于4.
(1)求拋物線(xiàn)C的方程;
(2)設(shè)點(diǎn)N(3,0),過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)C于A,B兩點(diǎn).求|NA|•|NB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[0,1]時(shí),求函數(shù)f(x)=x2+(2-6a)x+3a2的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一商場(chǎng)對(duì)每天進(jìn)店人數(shù)和商品銷(xiāo)售件數(shù)進(jìn)行了統(tǒng)計(jì)對(duì)比,得到如下表格:(其中i=1,2,3,4,5,6,7,).
人數(shù)xi10152025303540
件數(shù)yi471215202327
(Ⅰ)以每天進(jìn)店人數(shù)為橫軸,每天商品銷(xiāo)售件數(shù)為縱軸,畫(huà)出散點(diǎn)圖.
(Ⅱ)求回歸直線(xiàn)方程.(結(jié)果保留到小數(shù)點(diǎn)后兩位)
(參考數(shù)據(jù):
7
i=1
xiyi=3245,
.
x
=25,
.
y
=15.43,
7
i=1
x
 
2
i
=5075,7(
.
x
2=4375,
.
x
.
y
=2695,
b
=
n
i=1
xiyi-n
.
n
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x

(Ⅲ)預(yù)測(cè)進(jìn)店人數(shù)為80人時(shí),商品銷(xiāo)售的件數(shù).(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(cosωx,sinωx)(ω>0),
n
=(-3,
3
),若函數(shù)f(x)=
m
n
的最小正周期是2,則f(1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案