直角梯形如圖1,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),由沿邊運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為,的面積為.如果函數(shù)的圖象如圖2所示,則的面積為
A.10B.32C.18D.16
D

專題:圖表型.
分析:由y=f(x)的圖象可知,當(dāng)x由0→4時(shí),f(x)由0變成最大,說(shuō)明BC=4,由x從4→9時(shí)f(x)不變,說(shuō)明此時(shí)P點(diǎn)在DC上,即CD=5,由x從9→14時(shí)f(x)變?yōu)?,說(shuō)明此時(shí)P點(diǎn)在AD上,即AD=5.所以可求AB的長(zhǎng),最后求出答案.
解答:解:由題意知,BC=4,CD=5,AD=5
過(guò)D作DG⊥AB
∴AG=3,由此可求出AB=3+5=8.
SABC=AB?BC=×8×4=16.
故選D.
點(diǎn)評(píng):要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實(shí)際意義得到正確的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12 分)
已知函數(shù).
①當(dāng)時(shí),求的最小值;
②若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
③當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
設(shè)定義在R上的函數(shù)f(x)=a0x4a1x3a2x2a3xa4(a0a1,a2,a3a4∈R)當(dāng)x=-1時(shí),f(x)取得極大值,且函數(shù)yf(x+1)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)試在函數(shù)yf(x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在區(qū)間[-,]上;
(Ⅲ)設(shè)xn=,ym=(m,n∈N?),求證:|f(xn)-f(ym)|<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
【理科生】已知函數(shù)處的切線與直線平行;
(1)求a的值;
(2)求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)在R上有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知物體的運(yùn)動(dòng)方程為(t是時(shí)間,s是位移),則物體在時(shí)刻t=2時(shí)的速度為_(kāi)___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)處的切線方程為_(kāi)_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題


設(shè)曲線在點(diǎn)處的切線與直線平行,則            。

查看答案和解析>>

同步練習(xí)冊(cè)答案