已知正方體ABCD-A1B1C1D1內(nèi)有一個(gè)內(nèi)切球O,則在正方體ABCD-A1B1C1D1內(nèi)任取點(diǎn)M,點(diǎn)M在球O內(nèi)的概率是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:本題是幾何概型問題,欲求點(diǎn)M在球O內(nèi)的概率,先由正方體ABCD-A1B1C1D1內(nèi)的內(nèi)切球O,求出其體積,再根據(jù)幾何概型概率公式結(jié)合正方體的體積的方法易求解.
解答:解:本題是幾何概型問題,設(shè)正方體的棱長為:2.
正方體ABCD-A1B1C1D1內(nèi)的內(nèi)切球O的半徑是其棱長的一增,
其體積為:V1=
則點(diǎn)M在球O內(nèi)的概率是 =
故選C.
點(diǎn)評(píng):本小題主要考查幾何概型、幾何概型的應(yīng)用、幾何體和體積等基礎(chǔ)知識(shí),考查空間想象能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點(diǎn)P在平面DD1C1C內(nèi),PD1=PC1=
2
.求證:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為BB1、CC1的中點(diǎn),那么直線AE與D1F所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E為棱CC1的動(dòng)點(diǎn).
(1)當(dāng)E恰為棱CC1的中點(diǎn)時(shí),試證明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一個(gè)點(diǎn)E,可以使二面角A1-BD-E的大小為45°?如果存在,試確定點(diǎn)E在棱CC1上的位置;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,則四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是
3
6
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點(diǎn).
(1)求證:C1O∥面AB1D1;
(2)求異面直線AD1與 C1O所成角的大。

查看答案和解析>>

同步練習(xí)冊答案