平面α平行平面β,點(diǎn)A,C∈平面α,點(diǎn)B,D∈平面β,直線(xiàn)AB與CD相交于點(diǎn)S,且AS=8,BS=9,CD=34.則線(xiàn)段CS的長(zhǎng)度是
 
考點(diǎn):直線(xiàn)與平面平行的性質(zhì)
專(zhuān)題:空間位置關(guān)系與距離
分析:作出圖形,利用平面與平面平行推出直線(xiàn)與直線(xiàn)平行,通過(guò)相似列出比例關(guān)系,求解即可.因?yàn)槠矫姒痢纹矫姒,且A、C∈α,B、D∈β,直線(xiàn)AB與CD交于點(diǎn)S,所以根據(jù)平面與平面平行的性質(zhì)定理可得:兩條交線(xiàn)應(yīng)該平行,連接AC、BD,即AC∥BD,所以△SAC∽△SBD,又根據(jù)相似比的概念及AS=8,BS=9,CD=34,則:①SC=16,②SC=272.
解答: 解:∵平面α∥平面β,A、C∈α,B、D∈β,直線(xiàn)AB與CD交于點(diǎn)S,

∴根據(jù)平面與平面平行的性質(zhì)定理可得:AC∥BD,
∴△SAC∽△SBD,
①∴
SC
SD
=
AS
SB
=
8
9
,且SC+SD=CD=34,則:SC=16;
②∴
SC
SD
=
AS
SB
=
8
9
,且SD-SC=CD=34,則:SC=272.
故答案為:①SC=16,②SC=272.
點(diǎn)評(píng):本題考查平面與平面平行的性質(zhì),相似三角形的性質(zhì),容易疏忽兩種類(lèi)型之一,是基礎(chǔ)題,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校舉行聯(lián)歡會(huì),所有參演的節(jié)目都由甲、乙、丙三名專(zhuān)業(yè)老師投票決定是否獲獎(jiǎng),甲、乙、丙三名老師都有“獲獎(jiǎng)”“待定”“淘汰”三類(lèi)票各一張,每個(gè)節(jié)目投票時(shí),甲、乙、丙三名老師必須且只能投一張票,每人投三類(lèi)票中的任意一類(lèi)票的概率為
1
3
,且三人投票相互沒(méi)有影響,若投票結(jié)果中至少有兩張“獲獎(jiǎng)”票,則決定該節(jié)目最終獲一等獎(jiǎng);否則,該節(jié)目不能獲一等獎(jiǎng).
(1)求某節(jié)目的投票結(jié)果是最終獲一等獎(jiǎng)的概率;
(2)求該節(jié)目投票結(jié)果中所含“獲獎(jiǎng)”和“待定”票票數(shù)之和X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式|tx-2|-|tx-t|≤1,其中t是實(shí)參數(shù).
(1)當(dāng)t=1時(shí),解上面的不等式.
(2)若?x∈R,上面的不等式均成立,求實(shí)數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos(2x+φ)的圖象向左平移
π
3
單位后為奇函數(shù),則φ的最小正值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且(Sn-1)2=anSn
(Ⅰ)求a1;
(Ⅱ)求證:數(shù)列{
1
Sn-1
}為等差數(shù)列;
(Ⅲ)是否存在正整數(shù)m,k,使
1
akSk
=
1
am
+19成立?若存在,求出m,k;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)與直線(xiàn)x+y-3=0以及x軸圍成三角形面積為8,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線(xiàn)y=
1
8
x2的焦點(diǎn)與雙曲線(xiàn)
y2
a2
-x2=1的一個(gè)焦點(diǎn)重合,則該雙曲線(xiàn)的離心率為( 。
A、
2
3
3
B、
2
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosθ,sinθ),
b
=(cos2θ,sin2θ),
c
=(0,1).
(Ⅰ)若
a
b
,求角θ;
(Ⅱ)設(shè)f(θ)=
a
•(
b
-
c
),當(dāng)θ∈(0,
π
2
)時(shí),求f(θ)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x4-
a
2
x
9的展開(kāi)式中常數(shù)項(xiàng)是9,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案