已知扇形AOB的周長(zhǎng)為8cm,面積為3cm2,則其圓心角為( 。
A、6或
2
3
B、6或
3
2
C、
1
6
2
3
D、
1
6
或3
考點(diǎn):扇形面積公式
專題:計(jì)算題
分析:根據(jù)題意設(shè)出扇形的弧長(zhǎng)與半徑,通過(guò)扇形的周長(zhǎng)與面積,即可求出扇形的弧長(zhǎng)與半徑,進(jìn)而根據(jù)公式α=
l
r
求出扇形圓心角的弧度數(shù).
解答: 解:設(shè)扇形的弧長(zhǎng)為:l,半徑為r,所以2r+l=8,
因?yàn)镾扇形=
1
2
lr=3,
所以解得:r=1,l=6或者r=3,l=2
所以扇形的圓心角的弧度數(shù)是:
6
1
=6或者
2
3
;
故選:A.
點(diǎn)評(píng):本題主要考查扇形的周長(zhǎng)與扇形的面積公式的應(yīng)用,以及考查學(xué)生的計(jì)算能力,此題屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

角α是三角形的一個(gè)內(nèi)角,且sinα=
3
2
,則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(x-2)(2x+1)>0的解集是( 。
A、(-
1
2
,2)
B、(-2,
1
2
C、(-∞,-2)∪(
1
2
,+∞)
D、(-∞,-
1
2
)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果質(zhì)點(diǎn)A的位移s隨時(shí)間t的變化關(guān)系為s=2t3+1,那么在第3秒時(shí)的瞬時(shí)速度為( 。
A、55B、54C、18D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(x-
π
4
)在區(qū)間[0,
π
2
]上( 。
A、單調(diào)遞增且有最大值
B、單調(diào)遞增但無(wú)最大值
C、單調(diào)遞減且有最大值
D、單調(diào)遞減但無(wú)最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y=x2上一動(dòng)點(diǎn)P(t,t2) (0<t<1)作此拋物線的切線l,拋物線y=x2與直線x=0、x=1及切線l圍成的圖形的面積為S,則S的最小值為( 。
A、
1
12
B、
1
10
C、
1
6
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-2,其中α是第二象限角,則cosα=( 。
A、-
5
5
B、
5
5
C、±
5
5
D、-
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
1-2x<-7
(x+1)(x-2)≥4
的解集為( 。
A、(-∞,-2]∪[3,4)
B、(-∞,-2]∪(4,+∞)
C、(4,+∞)
D、(-∞,-2]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

座落于我市紅梅公園邊的天寧寶塔堪稱中華之最,也堪稱佛塔世界之最.如圖,已知天寧寶塔AB高度為150米,某大樓CD高度為90米,從大樓CD頂部C看天寧寶塔AB的張角∠ACB=45°,求天寧寶塔AB與大樓CD底部之間的距離BD.

查看答案和解析>>

同步練習(xí)冊(cè)答案