精英家教網 > 高中數學 > 題目詳情

【題目】的內心,三邊長,點在邊上,且,若直線交直線于點,則線段的長為______.

【答案】

【解析】

設內切圓⊙I與三角形三邊分別相切于點OD,EIOAB,建立直角坐標系.分別設AOxBOy,CDz.利用切線的性質定理可得xy,z.利用余弦定理可得cosB,sinBtanB,可得直線BC的方程.設內切圓的半徑為r.則,解得r,得I坐標,可得直線PI的方程,聯(lián)立直線BCPI解得Q.即可得|CQ|6|BQ|

如圖所示,設內切圓⊙I與三角形三邊分別相切于點O,D,E,IOAB,建立直角坐標系.

分別設AOx,BOy,CDz,則,解得x3,y4,z2O00),B40),P(﹣1,0),

中,cosBsinB,可得tanB

直線BC的方程為:yx4).

設內切圓的半徑為r.則,解得r.可得I

直線PI的方程為:yx+,即yx+

聯(lián)立,解得Q,

|CQ|6|BQ|66

故答案為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設從進口開始到出口,每遇到一個岔路口,每位游客選擇其中一條道路行進是等可能的.現有甲、乙、丙、丁共名游客結伴到旅游景區(qū)游玩,他們從進口的岔路口就開始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設點是其中的一個交叉路口點.

(1)求甲經過點的概率;

(2)設這名游客中恰有名游客都是經過點,求隨機變量的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若方程為常數)有兩個不相等的根,則實數的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當直線軸平行時,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點的定點使得直線變化時,總有?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形中,,,,,分別在上,,現將四邊形沿折起,使平面平面.

(Ⅰ)若,在折疊后的線段上是否存在一點,且,使得平面?若存在,求出的值;若不存在,說明理由;

(Ⅱ)當三棱錐的體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點與點在直線的兩側,給出以下結論:①;②當時,有最小值,無最大值;③;④當時,的取值范圍是,正確的個數為(

A.1B.2C.3D.以上都不對

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結構極為復雜,但其內部卻是有規(guī)律可尋的.一個數學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現給出有關數列的四個命題:

①數列是等比數列;

②數列是遞增數列;

③存在最小的正數,使得對任意的正整數 ,都有 ;

④存在最大的正數,使得對任意的正整數,都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓P恒過定點,且與直線相切.

(Ⅰ)求動圓P圓心的軌跡M的方程;

(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點C、D在軌跡M上,求正方形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數

得分

17

18

19

20

(Ⅰ)現從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學生的跳繩個數服從正態(tài)分布,用樣本數據的平均值和方差估計總體的期望和方差,已知樣本方差(各組數據用中點值代替).根據往年經驗,該校初三年級學生經過一年的訓練,正式測試時每人每分鐘跳繩個數都有明顯進步,假設今年正式測試時每人每分鐘跳繩個數比初三上學期開始時個數增加10個,現利用所得正態(tài)分布模型:

預計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數;(結果四舍五入到整數)

若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數為ξ,求隨機變量的分布列和期望.

附:若隨機變量服從正態(tài)分布,則,,.

查看答案和解析>>

同步練習冊答案