已知四男三女站成一排,一號男生不在第一個,二號和三號男生必須相鄰,女生之間不相鄰,則共有
 
種站法.
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:利用排除法,先不考慮一號男生,再排除一號男生在第一個種數(shù),問題得以解決
解答: 解:把二號和三號男生捆綁在一起看作一個元素,再和另外2個男生全排,形成的4個空中,插入女生,共有
A
2
2
A
3
3
A
3
4
=288種,
當(dāng)一號男生排在在第一個,先把二號和三號男生捆綁在一起看作一個元素,再和另外1個男生全排,形成的3個空中,插入女生,共有
A
2
2
A
2
2
A
3
3
=24種,
故一號男生不在第一個,二號和三號男生必須相鄰,女生之間不相鄰,則共有288-24=264種,
故答案為:264
點評:本題考查了排列中的相鄰問題,不相鄰問題,特殊元素問題,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項為1的等差數(shù)列,若該數(shù)列從第10項開始為負,則公差d的取值范圍是( 。
A、(-∞,-
1
9
)
B、(-
1
8
,-
1
9
)
C、[-
1
8
,-
1
9
)
D、[-
1
9
,-
1
10
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過點(2,2),且于
y2
4
-x2=1具有相同漸近線的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用更相減損術(shù)求440與556的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|x-2|>0的解集為R.
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為六級,相對應(yīng)空氣質(zhì)量的六個類別(見表),指數(shù)越大,級別越高說明污染情況越嚴重,對人體的危害也越大.
級別
指數(shù)
當(dāng)日數(shù)(微克/立方米)范圍0,5050,100100,150150,200200,300300,500
空氣質(zhì)量優(yōu)輕度污染中度污染重度污染嚴重污染
為了調(diào)查某城市空氣質(zhì)量狀況,對近300天空氣中PM2.5濃度進行統(tǒng)計,得出這300天中PM2.5濃度的頻率分布直方圖.將PM2.5濃度落入各組的頻率視為概率,并假設(shè)每天的PM2.5濃度相互獨立.
(Ⅰ)當(dāng)空氣質(zhì)量指數(shù)為一級或二級時,人們可正常進行戶外運動,根據(jù)樣本數(shù)據(jù)頻率分布直方圖,估算該市居民每天可正常進行戶外運動的概率;
(Ⅱ)當(dāng)空氣質(zhì)量為“重度污染”和“嚴重污染”時,出現(xiàn)霧霾天氣的概率為
5
8
,求在未來2天里,該市恰好有1天出現(xiàn)霧霾天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A、y=ln(x+3)
B、y=-
x+2
C、y=(
1
2
)x
D、y=
1
x
-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(-2,-3)和以Q為圓心的圓(x-m+1)2+(y-3m)2=4.
(1)求證:圓心Q在過點P的定直線上;
(2)當(dāng)m為何值時,以PQ為直徑的圓過原點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中,真命題的個數(shù)是
 

①?x∈R,x2+x+3>0;
②?x∈Q,
1
3
x2+
1
2
x+1是有理數(shù);
③?α,β∈R,使sin(α+β)=sinα+sinβ;
④?x0,y0∈Z,使3x0-2y0=10.

查看答案和解析>>

同步練習(xí)冊答案