數(shù)列1,1,2,1,1,2,3,2,1,1,2,3,4,3,2,1,…,則第100項為( 。
A、1B、2C、3D、4
考點:數(shù)列的概念及簡單表示法
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:將數(shù)列的項重新分組,得到數(shù)列項的規(guī)律,即可得到結論.
解答: 解:將數(shù)列的數(shù)進行重新分組,1,(1,2,1),(1,2,3,2,1),(1,2,3,4,3,2,1),…,
則每組的個數(shù)分別為1,3,5,7,…,
則設第100項位于第n組,則n+
n(n-1)
2
×2
=n2,由n2=100,
解得n=10,即第100項是第10組的最后一個數(shù),為1,
故選:A.
點評:本題主要考查數(shù)列的概念,根據(jù)數(shù)列特點,尋找規(guī)律是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一只艘船以均勻的速度由A點向正北方向航行,如圖,開始航行時,從A點觀測燈塔C的方位角(從正北方向順時針轉到目標方向的水平角)為45°,行駛60海里后,船在B點觀測燈塔C的方位角為75°,則A到C的距離是( 。┖@铮
A、30(
6
+
2
B、30(
6
-
2
C、30(
6
-
3
D、30(
6
+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
的兩條漸近線為l1,l2,過右焦點F作垂直l1的直線交l1,l2于A,B兩點.若|OA|,|AB|,|OB|成等差數(shù)列,則雙曲線的離心率為( 。
A、
5
2
B、
5
C、
3
D、
3
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=3,an+2=an+1-an,n∈N*,利用如圖所示的程序框圖計算該數(shù)列的第n項(n≥3),若輸出S的結果為1,則判斷框內的條件可能是( 。
A、n≤5?B、n≤6?
C、n≤7?D、n≤8?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-ax+2在(2,+∞)上單調遞增,則a的取值范圍為( 。
A、[2,+∞)
B、[4,+∞)
C、(-∞,4]
D、(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面幾個推理過程是演繹推理的是(  )
A、某同學第一次數(shù)學考試65分,第二次考試68分,由此預測其第三次考試71分
B、根據(jù)圓的面積為S=πr2,推測球的體積為V=πr3
C、在數(shù)列{an}中,根據(jù)a1=1,an+1=
an
an+1
,n∈N*,計算出a2,a3,a4的值,然后猜想{an}的通項公式
D、因為平行四邊形的對角線互相平分,而菱形是平行四邊形,所以菱形的對角線互相平分

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x=2”是“l(fā)og2|x|=1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a3-a1=3,a1+a2=3.
(Ⅰ)求數(shù)列{an}的前15項的和S15;
(Ⅱ)若等差數(shù)列{bn}滿足b1=a2,b3=a2+a3,求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD,PA⊥平面ABCD,PA=AB=BC=
1
2
AD,四邊形ABCD是直角梯形中,∠ABC=∠BAD=90°.
(1)求證:CD⊥平面PAC;
(2)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步練習冊答案