精英家教網 > 高中數學 > 題目詳情
已知是橢圓的左、右焦點,過點
傾斜角為的直線交橢圓于兩點,
(1)求橢圓的離心率;
(2)若,求橢圓的標準方程.
解:(1)直線的方程為
,消去得, 
,則① ,    ②,
又由③ ,
由①②得,

(2),

∴橢圓標準方程為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的左、右焦點分別為、,點在雙曲線的右支上,直線為過且切于雙曲線的直線,且平分,過作與直線平行的直線交點,則,利用類比推理:若橢圓的左、右焦點分別為,點在橢圓上,直線為過且切于橢圓的直線,且平分的外角,過作與直線平行的直線交點,則的值為 (     )  
A.B.C.D.無法確定

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若拋物線的焦點與雙曲線的右焦點重合,則的值為(   )
A.-6B.6C.-4D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖邊長為2的正方形花園的一角是以A為中心,1為半徑的扇形水池.現需在其余部分設計一個矩形草坪PNCQ,其中P是水池邊上任意一點,點N、Q分別在邊BC和CD上,設∠PAB為θ.
(I)用θ表示矩形草坪PNCQ的面積,并求其最小值;
(II)求點P到邊BC和AB距離之比的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點,是直線上任意一點,以、
焦點的橢圓過點.記橢圓離心率關于的函數為,那么下列結論正確的是(  )                                                                                        
A.一一對應B.函數無最小值,有最大值
C.函數是增函數D.函數有最小值,無最大值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓方程為,斜率為的直線過橢圓的上焦點且與橢圓相交于兩點,線段的垂直平分線與軸相交于點
(Ⅰ)求的取值范圍;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


本小題滿分12分)
如圖,已知橢圓C1的中心在原點O,長軸左、右端點M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C2交于兩點,這四點按縱坐標從大到小依次為A,B,C,D.

(1)設,求的比值;
(2)當e變化時,是否存在直線l,使得BO∥AN,并說明理由

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

頂點在原點,以軸為對稱軸且經過點的拋物線的標準方程為___________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

中心在原點,對稱軸為坐標軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是____;

查看答案和解析>>

同步練習冊答案