【題目】某廠家擬在2010年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費用m萬元(m≥0)滿足x=3﹣ (k為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2010年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2010年該產(chǎn)品的利潤y萬元表示為年促銷費用m萬元的函數(shù);
(2)該廠家2010年的促銷費用投入多少萬元時,廠家的利潤最大.

【答案】
(1)解:由題意可知當(dāng)m=0時,x=1(萬件),

∴1=3﹣kk=2.

∴x=3﹣

每件產(chǎn)品的銷售價格為1.5× (元),

∴2010年的利潤y=x ﹣(8+16x+m)

=4+8x﹣m=4+8 ﹣m

=﹣ +29(m≥0)


(2)解:∵m≥0時, +(m+1)≥2 =8,

∴y≤﹣8+29=21,當(dāng)且僅當(dāng) =m+1m=3(萬元)時,

ymax=21(萬元).

所以當(dāng)該廠家2010年的促銷費用投入3萬元時,廠家的利潤最大


【解析】(1)由題意可知當(dāng)m=0時,x=1由滿足x=3﹣ ,即可得出k值,從而得出每件產(chǎn)品的銷售價格,從而得出2010年的利潤的表達式即可;(2)對于(1)中求得的解析式,根據(jù)其中兩項之積為定值結(jié)合利用基本不等式此函數(shù)的最大值及相應(yīng)的x值,從而解決該廠家2010年的促銷費用投入多少萬元時,廠家的利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,解關(guān)于x的不等式ax2+(1﹣a)x﹣1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓E (a>b>0)上一點,離心率為.

(1)求橢圓E的方程;

(2)設(shè)不過原點O的直線l與該橢圓E交于P,Q兩點,滿足直線OP,PQOQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是(
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,為前天兩只老鼠打洞之和,則_________________尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個無窮數(shù)列的前項和分別為,,,對任意的,都有.

(1)求數(shù)列的通項公式;

(2)若為等差數(shù)列,對任意的,都有.證明:;

(3)若為等比數(shù)列,,,求滿足值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)(x1 , y1),(x2 , y2),…,(xn , yn),是變量x和y的n個樣本點,直線l是由這些樣本點通過最小二乘法得到的線性回歸方程(如圖),以下結(jié)論中正確的是(

A.x和y正相關(guān)
B.x和y的相關(guān)系數(shù)為直線l的斜率
C.x和y的相關(guān)系數(shù)在﹣1到0之間
D.當(dāng)n為偶數(shù)時,分布在l兩側(cè)的樣本點的個數(shù)一定相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示.

P(K2k0)

0.10

0.05

0.01

k0

2.706

3.841

6.635

附:

(1)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù),你認為選擇不同的工藝與生產(chǎn)出一等品是否有關(guān)?

甲工藝

乙工藝

總計

一等品

非一等品

總計

(2)以上述各種產(chǎn)品的頻率作為各種產(chǎn)品發(fā)生的概率,若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,你認為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)函數(shù),,求函數(shù)的最小值;

(2)對任意,都有成立,求的范圍.

查看答案和解析>>

同步練習(xí)冊答案